note: The above pre-build inference library is compiled from the PaddleLite `release/v2.7` branch. For more information about PaddleLite 2.6.3, please refer to [link](https://github.com/PaddlePaddle/Paddle-Lite/releases/tag/v2.6.3).
PaddleLite also provides a compiled [prediction library](https://github.com/PaddlePaddle/Paddle-Lite/releases/tag/v2.7.1), developers can try on their own.
## 4. Inference Model Optimization
## 4. Inference Model Optimization
...
@@ -80,7 +77,6 @@ You can directly download the optimized model.
...
@@ -80,7 +77,6 @@ You can directly download the optimized model.
| - | - | - | - | - | - | - |
| - | - | - | - | - | - | - |
| V1.1 | extra-lightweight chinese OCR optimized model | 8.1M | [Download](https://paddleocr.bj.bcebos.com/20-09-22/mobile/lite/ch_ppocr_mobile_v1.1_det_opt.nb) | [Download](https://paddleocr.bj.bcebos.com/20-09-22/mobile/lite/ch_ppocr_mobile_v1.1_cls_opt.nb) | [Download](https://paddleocr.bj.bcebos.com/20-09-22/mobile/lite/ch_ppocr_mobile_v1.1_rec_opt.nb) | develop |
| V1.1 | extra-lightweight chinese OCR optimized model | 8.1M | [Download](https://paddleocr.bj.bcebos.com/20-09-22/mobile/lite/ch_ppocr_mobile_v1.1_det_opt.nb) | [Download](https://paddleocr.bj.bcebos.com/20-09-22/mobile/lite/ch_ppocr_mobile_v1.1_cls_opt.nb) | [Download](https://paddleocr.bj.bcebos.com/20-09-22/mobile/lite/ch_ppocr_mobile_v1.1_rec_opt.nb) | develop |
| [slim] V1.1 | extra-lightweight chinese OCR optimized model | 3.5M | [Download](https://paddleocr.bj.bcebos.com/20-09-22/mobile/lite/ch_ppocr_mobile_v1.1_det_prune_opt.nb) | [Download](https://paddleocr.bj.bcebos.com/20-09-22/mobile/lite/ch_ppocr_mobile_v1.1_cls_quant_opt.nb) | [Download](https://paddleocr.bj.bcebos.com/20-09-22/mobile/lite/ch_ppocr_mobile_v1.1_rec_quant_opt.nb) | develop |
| [slim] V1.1 | extra-lightweight chinese OCR optimized model | 3.5M | [Download](https://paddleocr.bj.bcebos.com/20-09-22/mobile/lite/ch_ppocr_mobile_v1.1_det_prune_opt.nb) | [Download](https://paddleocr.bj.bcebos.com/20-09-22/mobile/lite/ch_ppocr_mobile_v1.1_cls_quant_opt.nb) | [Download](https://paddleocr.bj.bcebos.com/20-09-22/mobile/lite/ch_ppocr_mobile_v1.1_rec_quant_opt.nb) | develop |
| V1.0 | lightweight Chinese OCR optimized model | 8.6M | [Download](https://paddleocr.bj.bcebos.com/20-09-22/mobile/lite/ch_ppocr_mobile_v1.0_det_opt.nb) | - | [Download](https://paddleocr.bj.bcebos.com/20-09-22/mobile/lite/ch_ppocr_mobile_v1.0_rec_opt.nb) | develop |
If the model to be deployed is not in the above table, you need to follow the steps below to obtain the optimized model.
If the model to be deployed is not in the above table, you need to follow the steps below to obtain the optimized model.
@@ -33,7 +33,7 @@ On Total-Text dataset, the text detection result is as follows:
...
@@ -33,7 +33,7 @@ On Total-Text dataset, the text detection result is as follows:
**Note:** Additional data, like icdar2013, icdar2017, COCO-Text, ArT, was added to the model training of SAST. Download English public dataset in organized format used by PaddleOCR from [Baidu Drive](https://pan.baidu.com/s/12cPnZcVuV1zn5DOd4mqjVw)(download code: 2bpi).
**Note:** Additional data, like icdar2013, icdar2017, COCO-Text, ArT, was added to the model training of SAST. Download English public dataset in organized format used by PaddleOCR from [Baidu Drive](https://pan.baidu.com/s/12cPnZcVuV1zn5DOd4mqjVw)(download code: 2bpi).
For the training guide and use of PaddleOCR text detection algorithms, please refer to the document [Text detection model training/evaluation/prediction](./doc/doc_en/detection_en.md)
For the training guide and use of PaddleOCR text detection algorithms, please refer to the document [Text detection model training/evaluation/prediction](./detection_en.md)
<aname="TEXTRECOGNITIONALGORITHM"></a>
<aname="TEXTRECOGNITIONALGORITHM"></a>
### 2. Text Recognition Algorithm
### 2. Text Recognition Algorithm
...
@@ -63,4 +63,4 @@ Refer to [DTRB](https://arxiv.org/abs/1904.01906), the training and evaluation r
...
@@ -63,4 +63,4 @@ Refer to [DTRB](https://arxiv.org/abs/1904.01906), the training and evaluation r
The average accuracy of the two-stage training in the original paper is 89.74%, and that of one stage training in paddleocr is 88.33%. Both pre-trained weights can be downloaded [here](https://paddleocr.bj.bcebos.com/SRN/rec_r50fpn_vd_none_srn.tar).
The average accuracy of the two-stage training in the original paper is 89.74%, and that of one stage training in paddleocr is 88.33%. Both pre-trained weights can be downloaded [here](https://paddleocr.bj.bcebos.com/SRN/rec_r50fpn_vd_none_srn.tar).
Please refer to the document for training guide and use of PaddleOCR text recognition algorithms [Text recognition model training/evaluation/prediction](./doc/doc_en/recognition_en.md)
Please refer to the document for training guide and use of PaddleOCR text recognition algorithms [Text recognition model training/evaluation/prediction](./recognition_en.md)