Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
weixin_41840029
PaddleOCR
提交
cac71544
P
PaddleOCR
项目概览
weixin_41840029
/
PaddleOCR
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleOCR
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleOCR
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
cac71544
编写于
8月 03, 2021
作者:
M
MissPenguin
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update 2.2
上级
f7aca1d0
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
0 addition
and
251 deletion
+0
-251
doc/doc_ch/knowledge_distillation.md
doc/doc_ch/knowledge_distillation.md
+0
-251
未找到文件。
doc/doc_ch/knowledge_distillation.md
已删除
100644 → 0
浏览文件 @
f7aca1d0
# 知识蒸馏
## 1. 简介
### 1.1 知识蒸馏介绍
近年来,深度神经网络在计算机视觉、自然语言处理等领域被验证是一种极其有效的解决问题的方法。通过构建合适的神经网络,加以训练,最终网络模型的性能指标基本上都会超过传统算法。
在数据量足够大的情况下,通过合理构建网络模型的方式增加其参数量,可以显著改善模型性能,但是这又带来了模型复杂度急剧提升的问题。大模型在实际场景中使用的成本较高。
深度神经网络一般有较多的参数冗余,目前有几种主要的方法对模型进行压缩,减小其参数量。如裁剪、量化、知识蒸馏等,其中知识蒸馏是指使用教师模型(teacher model)去指导学生模型(student model)学习特定任务,保证小模型在参数量不变的情况下,得到比较大的性能提升。
此外,在知识蒸馏任务中,也衍生出了互学习的模型训练方法,论文
[
Deep Mutual Learning
](
https://arxiv.org/abs/1706.00384
)
中指出,使用两个完全相同的模型在训练的过程中互相监督,可以达到比单个模型训练更好的效果。
### 1.2 PaddleOCR知识蒸馏简介
无论是大模型蒸馏小模型,还是小模型之间互相学习,更新参数,他们本质上是都是不同模型之间输出或者特征图(feature map)之间的相互监督,区别仅在于 (1) 模型是否需要固定参数。(2) 模型是否需要加载预训练模型。
对于大模型蒸馏小模型的情况,大模型一般需要加载预训练模型并固定参数;对于小模型之间互相蒸馏的情况,小模型一般都不加载预训练模型,参数也都是可学习的状态。
在知识蒸馏任务中,不只有2个模型之间进行蒸馏的情况,多个模型之间互相学习的情况也非常普遍。因此在知识蒸馏代码框架中,也有必要支持该种类别的蒸馏方法。
PaddleOCR中集成了知识蒸馏的算法,具体地,有以下几个主要的特点:
-
支持任意网络的互相学习,不要求子网络结构完全一致或者具有预训练模型;同时子网络数量也没有任何限制,只需要在配置文件中添加即可。
-
支持loss函数通过配置文件任意配置,不仅可以使用某种loss,也可以使用多种loss的组合
-
支持知识蒸馏训练、预测、评估与导出等所有模型相关的环境,方便使用与部署。
通过知识蒸馏,在中英文通用文字识别任务中,不增加任何预测耗时的情况下,可以给模型带来3%以上的精度提升,结合学习率调整策略以及模型结构微调策略,最终提升提升超过5%。
## 2. 配置文件解析
在知识蒸馏训练的过程中,数据预处理、优化器、学习率、全局的一些属性没有任何变化。模型结构、损失函数、后处理、指标计算等模块的配置文件需要进行微调。
下面以识别与检测的知识蒸馏配置文件为例,对知识蒸馏的训练与配置进行解析。
### 2.1 识别配置文件解析
配置文件在
[
rec_chinese_lite_train_distillation_v2.1.yml
](
../../configs/rec/ch_ppocr_v2.1/rec_chinese_lite_train_distillation_v2.1.yml
)
。
#### 2.1.1 模型结构
知识蒸馏任务中,模型结构配置如下所示。
```
yaml
Architecture
:
model_type
:
&model_type
"
rec"
# 模型类别,rec、det等,每个子网络的的模型类别都与
name
:
DistillationModel
# 结构名称,蒸馏任务中,为DistillationModel,用于构建对应的结构
algorithm
:
Distillation
# 算法名称
Models
:
# 模型,包含子网络的配置信息
Teacher
:
# 子网络名称,至少需要包含`pretrained`与`freeze_params`信息,其他的参数为子网络的构造参数
pretrained
:
# 该子网络是否需要加载预训练模型
freeze_params
:
false
# 是否需要固定参数
return_all_feats
:
true
# 子网络的参数,表示是否需要返回所有的features,如果为False,则只返回最后的输出
model_type
:
*model_type
# 模型类别
algorithm
:
CRNN
# 子网络的算法名称,该子网络剩余参与均为构造参数,与普通的模型训练配置一致
Transform
:
Backbone
:
name
:
MobileNetV1Enhance
scale
:
0.5
Neck
:
name
:
SequenceEncoder
encoder_type
:
rnn
hidden_size
:
64
Head
:
name
:
CTCHead
mid_channels
:
96
fc_decay
:
0.00002
Student
:
# 另外一个子网络,这里给的是DML的蒸馏示例,两个子网络结构相同,均需要学习参数
pretrained
:
# 下面的组网参数同上
freeze_params
:
false
return_all_feats
:
true
model_type
:
*model_type
algorithm
:
CRNN
Transform
:
Backbone
:
name
:
MobileNetV1Enhance
scale
:
0.5
Neck
:
name
:
SequenceEncoder
encoder_type
:
rnn
hidden_size
:
64
Head
:
name
:
CTCHead
mid_channels
:
96
fc_decay
:
0.00002
```
当然,这里如果希望添加更多的子网络进行训练,也可以按照
`Student`
与
`Teacher`
的添加方式,在配置文件中添加相应的字段。比如说如果希望有3个模型互相监督,共同训练,那么
`Architecture`
可以写为如下格式。
```
yaml
Architecture
:
model_type
:
&model_type
"
rec"
name
:
DistillationModel
algorithm
:
Distillation
Models
:
Teacher
:
pretrained
:
freeze_params
:
false
return_all_feats
:
true
model_type
:
*model_type
algorithm
:
CRNN
Transform
:
Backbone
:
name
:
MobileNetV1Enhance
scale
:
0.5
Neck
:
name
:
SequenceEncoder
encoder_type
:
rnn
hidden_size
:
64
Head
:
name
:
CTCHead
mid_channels
:
96
fc_decay
:
0.00002
Student
:
pretrained
:
freeze_params
:
false
return_all_feats
:
true
model_type
:
*model_type
algorithm
:
CRNN
Transform
:
Backbone
:
name
:
MobileNetV1Enhance
scale
:
0.5
Neck
:
name
:
SequenceEncoder
encoder_type
:
rnn
hidden_size
:
64
Head
:
name
:
CTCHead
mid_channels
:
96
fc_decay
:
0.00002
Student2
:
# 知识蒸馏任务中引入的新的子网络,其他部分与上述配置相同
pretrained
:
freeze_params
:
false
return_all_feats
:
true
model_type
:
*model_type
algorithm
:
CRNN
Transform
:
Backbone
:
name
:
MobileNetV1Enhance
scale
:
0.5
Neck
:
name
:
SequenceEncoder
encoder_type
:
rnn
hidden_size
:
64
Head
:
name
:
CTCHead
mid_channels
:
96
fc_decay
:
0.00002
```
最终该模型训练时,包含3个子网络:
`Teacher`
,
`Student`
,
`Student2`
。
蒸馏模型
`DistillationModel`
类的具体实现代码可以参考
[
distillation_model.py
](
../../ppocr/modeling/architectures/distillation_model.py
)
。
最终模型
`forward`
输出为一个字典,key为所有的子网络名称,例如这里为
`Student`
与
`Teacher`
,value为对应子网络的输出,可以为
`Tensor`
(只返回该网络的最后一层)和
`dict`
(也返回了中间的特征信息)。
在识别任务中,为了添加更多损失函数,保证蒸馏方法的可扩展性,将每个子网络的输出保存为
`dict`
,其中包含子模块输出。以该识别模型为例,每个子网络的输出结果均为
`dict`
,key包含
`backbone_out`
,
`neck_out`
,
`head_out`
,
`value`
为对应模块的tensor,最终对于上述配置文件,
`DistillationModel`
的输出格式如下。
```
json
{
"Teacher"
:
{
"backbone_out"
:
tensor
,
"neck_out"
:
tensor
,
"head_out"
:
tensor
,
},
"Student"
:
{
"backbone_out"
:
tensor
,
"neck_out"
:
tensor
,
"head_out"
:
tensor
,
}
}
```
#### 2.1.2 损失函数
知识蒸馏任务中,损失函数配置如下所示。
```
yaml
Loss
:
name
:
CombinedLoss
# 损失函数名称,基于改名称,构建用于损失函数的类
loss_config_list
:
# 损失函数配置文件列表,为CombinedLoss的必备函数
-
DistillationCTCLoss
:
# 基于蒸馏的CTC损失函数,继承自标准的CTC loss
weight
:
1.0
# 损失函数的权重,loss_config_list中,每个损失函数的配置都必须包含该字段
model_name_list
:
[
"
Student"
,
"
Teacher"
]
# 对于蒸馏模型的预测结果,提取这两个子网络的输出,与gt计算CTC loss
key
:
head_out
# 取子网络输出dict中,该key对应的tensor
-
DistillationDMLLoss
:
# 蒸馏的DML损失函数,继承自标准的DMLLoss
weight
:
1.0
# 权重
act
:
"
softmax"
# 激活函数,对输入使用激活函数处理,可以为softmax, sigmoid或者为None,默认为None
model_name_pairs
:
# 用于计算DML loss的子网络名称对,如果希望计算其他子网络的DML loss,可以在列表下面继续填充
-
[
"
Student"
,
"
Teacher"
]
key
:
head_out
# 取子网络输出dict中,该key对应的tensor
-
DistillationDistanceLoss
:
# 蒸馏的距离损失函数
weight
:
1.0
# 权重
mode
:
"
l2"
# 距离计算方法,目前支持l1, l2, smooth_l1
model_name_pairs
:
# 用于计算distance loss的子网络名称对
-
[
"
Student"
,
"
Teacher"
]
key
:
backbone_out
# 取子网络输出dict中,该key对应的tensor
```
上述损失函数中,所有的蒸馏损失函数均继承自标准的损失函数类,主要功能为: 对蒸馏模型的输出进行解析,找到用于计算损失的中间节点(tensor),再使用标准的损失函数类去计算。
以上述配置为例,最终蒸馏训练的损失函数包含下面3个部分。
-
`Student`
和
`Teacher`
的最终输出(
`head_out`
)与gt的CTC loss,权重为1。在这里因为2个子网络都需要更新参数,因此2者都需要计算与g的loss。
-
`Student`
和
`Teacher`
的最终输出(
`head_out`
)之间的DML loss,权重为1。
-
`Student`
和
`Teacher`
的骨干网络输出(
`backbone_out`
)之间的l2 loss,权重为1。
关于
`CombinedLoss`
更加具体的实现可以参考:
[
combined_loss.py
](
../../ppocr/losses/combined_loss.py#L23
)
。关于
`DistillationCTCLoss`
等蒸馏损失函数更加具体的实现可以参考
[
distillation_loss.py
](
../../ppocr/losses/distillation_loss.py
)
。
#### 2.1.3 后处理
知识蒸馏任务中,后处理配置如下所示。
```
yaml
PostProcess
:
name
:
DistillationCTCLabelDecode
# 蒸馏任务的CTC解码后处理,继承自标准的CTCLabelDecode类
model_name
:
[
"
Student"
,
"
Teacher"
]
# 对于蒸馏模型的预测结果,提取这两个子网络的输出,进行解码
key
:
head_out
# 取子网络输出dict中,该key对应的tensor
```
以上述配置为例,最终会同时计算
`Student`
和
`Teahcer`
2个子网络的CTC解码输出,返回一个
`dict`
,
`key`
为用于处理的子网络名称,
`value`
为用于处理的子网络列表。
关于
`DistillationCTCLabelDecode`
更加具体的实现可以参考:
[
rec_postprocess.py
](
../../ppocr/postprocess/rec_postprocess.py#L128
)
#### 2.1.4 指标计算
知识蒸馏任务中,指标计算配置如下所示。
```
yaml
Metric
:
name
:
DistillationMetric
# 蒸馏任务的CTC解码后处理,继承自标准的CTCLabelDecode类
base_metric_name
:
RecMetric
# 指标计算的基类,对于模型的输出,会基于该类,计算指标
main_indicator
:
acc
# 指标的名称
key
:
"
Student"
# 选取该子网络的 main_indicator 作为作为保存保存best model的判断标准
```
以上述配置为例,最终会使用
`Student`
子网络的acc指标作为保存best model的判断指标,同时,日志中也会打印出所有子网络的acc指标。
关于
`DistillationMetric`
更加具体的实现可以参考:
[
distillation_metric.py
](
../../ppocr/metrics/distillation_metric.py#L24
)
。
### 2.2 检测配置文件解析
*
coming soon!
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录