Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
weixin_41840029
PaddleOCR
提交
bccba557
P
PaddleOCR
项目概览
weixin_41840029
/
PaddleOCR
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleOCR
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleOCR
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
bccba557
编写于
11月 26, 2021
作者:
D
Double_V
提交者:
GitHub
11月 26, 2021
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #4739 from tink2123/add_rec_ctc_model
add rec ctc model for tipc
上级
731a8406
ce873fa9
变更
18
隐藏空白更改
内联
并排
Showing
18 changed file
with
999 addition
and
9 deletion
+999
-9
test_tipc/configs/ch_ppocr_mobile_v2.0_rec/train_infer_python.txt
...c/configs/ch_ppocr_mobile_v2.0_rec/train_infer_python.txt
+51
-0
test_tipc/configs/ch_ppocr_server_v2.0_rec/rec_icdar15_train.yml
...pc/configs/ch_ppocr_server_v2.0_rec/rec_icdar15_train.yml
+0
-0
test_tipc/configs/ch_ppocr_server_v2.0_rec/train_infer_python.txt
...c/configs/ch_ppocr_server_v2.0_rec/train_infer_python.txt
+51
-0
test_tipc/configs/rec_mv3_none_bilstm_ctc_v2.0/rec_icdar15_train.yml
...onfigs/rec_mv3_none_bilstm_ctc_v2.0/rec_icdar15_train.yml
+97
-0
test_tipc/configs/rec_mv3_none_bilstm_ctc_v2.0/train_infer_python.txt
...nfigs/rec_mv3_none_bilstm_ctc_v2.0/train_infer_python.txt
+51
-0
test_tipc/configs/rec_mv3_none_none_ctc_v2.0/rec_icdar15_train.yml
.../configs/rec_mv3_none_none_ctc_v2.0/rec_icdar15_train.yml
+96
-0
test_tipc/configs/rec_mv3_none_none_ctc_v2.0/train_infer_python.txt
...configs/rec_mv3_none_none_ctc_v2.0/train_infer_python.txt
+51
-0
test_tipc/configs/rec_mv3_tps_bilstm_ctc_v2.0/rec_icdar15_train.yml
...configs/rec_mv3_tps_bilstm_ctc_v2.0/rec_icdar15_train.yml
+101
-0
test_tipc/configs/rec_mv3_tps_bilstm_ctc_v2.0/train_infer_python.txt
...onfigs/rec_mv3_tps_bilstm_ctc_v2.0/train_infer_python.txt
+51
-0
test_tipc/configs/rec_r34_vd_none_bilstm_ctc_v2.0/rec_icdar15_train.yml
...igs/rec_r34_vd_none_bilstm_ctc_v2.0/rec_icdar15_train.yml
+96
-0
test_tipc/configs/rec_r34_vd_none_bilstm_ctc_v2.0/train_infer_python.txt
...gs/rec_r34_vd_none_bilstm_ctc_v2.0/train_infer_python.txt
+51
-0
test_tipc/configs/rec_r34_vd_none_none_ctc_v2.0/rec_icdar15_train.yml
...nfigs/rec_r34_vd_none_none_ctc_v2.0/rec_icdar15_train.yml
+94
-0
test_tipc/configs/rec_r34_vd_none_none_ctc_v2.0/train_infer_python.txt
...figs/rec_r34_vd_none_none_ctc_v2.0/train_infer_python.txt
+51
-0
test_tipc/configs/rec_r34_vd_tps_bilstm_ctc_v2.0/rec_icdar15_train.yml
...figs/rec_r34_vd_tps_bilstm_ctc_v2.0/rec_icdar15_train.yml
+100
-0
test_tipc/configs/rec_r34_vd_tps_bilstm_ctc_v2.0/train_infer_python.txt
...igs/rec_r34_vd_tps_bilstm_ctc_v2.0/train_infer_python.txt
+51
-0
test_tipc/prepare.sh
test_tipc/prepare.sh
+3
-5
test_tipc/test_train_inference_python.sh
test_tipc/test_train_inference_python.sh
+3
-3
tools/infer/predict_rec.py
tools/infer/predict_rec.py
+1
-1
未找到文件。
test_tipc/configs/ch_ppocr_mobile_v2.0_rec/train_infer_python.txt
0 → 100644
浏览文件 @
bccba557
===========================train_params===========================
model_name:ch_ppocr_mobile_v2.0_rec
python:python3.7
gpu_list:0|0,1
Global.use_gpu:True|True
Global.auto_cast:null
Global.epoch_num:lite_train_infer=2|whole_train_infer=300
Global.save_model_dir:./output/
Train.loader.batch_size_per_card:lite_train_infer=128|whole_train_infer=128
Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./inference/rec_inference
null:null
##
trainer:norm_train
norm_train:tools/train.py -c configs/rec/rec_icdar15_train.yml -o
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c configs/rec/rec_icdar15_train.yml -o
null:null
##
===========================infer_params===========================
Global.save_inference_dir:./output/
Global.pretrained_model:
norm_export:tools/export_model.py -c configs/rec/rec_icdar15_train.yml -o
quant_export:null
fpgm_export:null
distill_export:null
export1:null
export2:null
##
infer_model:null
infer_export:tools/export_model.py -c configs/rec/rec_icdar15_train.yml -o
infer_quant:False
inference:tools/infer/predict_rec.py --rec_char_dict_path=./ppocr/utils/ic15_dict.txt --rec_image_shape="3,32,100" --rec_algorithm="RARE"
--use_gpu:True|False
--enable_mkldnn:True|False
--cpu_threads:1|6
--rec_batch_num:1|6
--use_tensorrt:True|False
--precision:fp32|fp16|int8
--rec_model_dir:
--image_dir:./inference/rec_inference
--save_log_path:./test/output/
--benchmark:True
null:null
test_tipc/configs/ch_ppocr_server_v2.0_rec/rec_icdar15_
r34_
train.yml
→
test_tipc/configs/ch_ppocr_server_v2.0_rec/rec_icdar15_train.yml
浏览文件 @
bccba557
文件已移动
test_tipc/configs/ch_ppocr_server_v2.0_rec/train_infer_python.txt
0 → 100644
浏览文件 @
bccba557
===========================train_params===========================
model_name:ch_ppocr_server_v2.0_rec
python:python3.7
gpu_list:0|0,1
Global.use_gpu:True|True
Global.auto_cast:null
Global.epoch_num:lite_train_lite_infer=5|whole_train_whole_infer=100
Global.save_model_dir:./output/
Train.loader.batch_size_per_card:lite_train_lite_infer=128|whole_train_whole_infer=128
Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./inference/rec_inference
null:null
##
trainer:norm_train
norm_train:tools/train.py -c test_tipc/configs/ch_ppocr_server_v2.0_rec/rec_icdar15_train.yml -o
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c test_tipc/configs/ch_ppocr_server_v2.0_rec/rec_icdar15_train.yml -o
null:null
##
===========================infer_params===========================
Global.save_inference_dir:./output/
Global.pretrained_model:
norm_export:tools/export_model.py -c test_tipc/configs/ch_ppocr_server_v2.0_rec/rec_icdar15_train.yml -o
quant_export:null
fpgm_export:null
distill_export:null
export1:null
export2:null
##
infer_model:null
infer_export:tools/export_model.py -c test_tipc/configs/ch_ppocr_server_v2.0_rec/rec_icdar15_train.yml -o
infer_quant:False
inference:tools/infer/predict_rec.py --rec_char_dict_path=./ppocr/utils/ic15_dict.txt --rec_image_shape="3,32,100"
--use_gpu:True|False
--enable_mkldnn:True|False
--cpu_threads:1|6
--rec_batch_num:1|6
--use_tensorrt:True|False
--precision:fp32|fp16|int8
--rec_model_dir:
--image_dir:./inference/rec_inference
--save_log_path:./test/output/
--benchmark:True
null:null
test_tipc/configs/rec_mv3_none_bilstm_ctc_v2.0/rec_icdar15_train.yml
0 → 100644
浏览文件 @
bccba557
Global
:
use_gpu
:
True
epoch_num
:
72
log_smooth_window
:
20
print_batch_step
:
10
save_model_dir
:
./output/rec/mv3_none_bilstm_ctc/
save_epoch_step
:
3
# evaluation is run every 2000 iterations
eval_batch_step
:
[
0
,
2000
]
cal_metric_during_train
:
True
pretrained_model
:
checkpoints
:
save_inference_dir
:
use_visualdl
:
False
infer_img
:
doc/imgs_words_en/word_10.png
# for data or label process
character_dict_path
:
max_text_length
:
25
infer_mode
:
False
use_space_char
:
False
save_res_path
:
./output/rec/predicts_mv3_none_bilstm_ctc.txt
Optimizer
:
name
:
Adam
beta1
:
0.9
beta2
:
0.999
lr
:
learning_rate
:
0.0005
regularizer
:
name
:
'
L2'
factor
:
0
Architecture
:
model_type
:
rec
algorithm
:
CRNN
Transform
:
Backbone
:
name
:
MobileNetV3
scale
:
0.5
model_name
:
large
Neck
:
name
:
SequenceEncoder
encoder_type
:
rnn
hidden_size
:
96
Head
:
name
:
CTCHead
fc_decay
:
0
Loss
:
name
:
CTCLoss
PostProcess
:
name
:
CTCLabelDecode
Metric
:
name
:
RecMetric
main_indicator
:
acc
Train
:
dataset
:
name
:
SimpleDataSet
data_dir
:
./train_data/ic15_data/
label_file_list
:
[
"
./train_data/ic15_data/rec_gt_train.txt"
]
transforms
:
-
DecodeImage
:
# load image
img_mode
:
BGR
channel_first
:
False
-
CTCLabelEncode
:
# Class handling label
-
RecResizeImg
:
image_shape
:
[
3
,
32
,
100
]
-
KeepKeys
:
keep_keys
:
[
'
image'
,
'
label'
,
'
length'
]
# dataloader will return list in this order
loader
:
shuffle
:
False
batch_size_per_card
:
256
drop_last
:
True
num_workers
:
8
Eval
:
dataset
:
name
:
SimpleDataSet
data_dir
:
./train_data/ic15_data
label_file_list
:
[
"
./train_data/ic15_data/rec_gt_test.txt"
]
transforms
:
-
DecodeImage
:
# load image
img_mode
:
BGR
channel_first
:
False
-
CTCLabelEncode
:
# Class handling label
-
RecResizeImg
:
image_shape
:
[
3
,
32
,
100
]
-
KeepKeys
:
keep_keys
:
[
'
image'
,
'
label'
,
'
length'
]
# dataloader will return list in this order
loader
:
shuffle
:
False
drop_last
:
False
batch_size_per_card
:
256
num_workers
:
4
test_tipc/configs/rec_mv3_none_bilstm_ctc_v2.0/train_infer_python.txt
0 → 100644
浏览文件 @
bccba557
===========================train_params===========================
model_name:rec_mv3_none_bilstm_ctc_v2.0
python:python3.7
gpu_list:0|0,1
Global.use_gpu:True|True
Global.auto_cast:null
Global.epoch_num:lite_train_lite_infer=5|whole_train_whole_infer=100
Global.save_model_dir:./output/
Train.loader.batch_size_per_card:lite_train_lite_infer=128|whole_train_whole_infer=128
Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./inference/rec_inference
null:null
##
trainer:norm_train
norm_train:tools/train.py -c test_tipc/configs/rec_mv3_none_bilstm_ctc_v2.0/rec_icdar15_train.yml -o
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c test_tipc/configs/rec_mv3_none_bilstm_ctc_v2.0/rec_icdar15_train.yml -o
null:null
##
===========================infer_params===========================
Global.save_inference_dir:./output/
Global.pretrained_model:
norm_export:tools/export_model.py -c test_tipc/configs/rec_mv3_none_bilstm_ctc_v2.0/rec_icdar15_train.yml -o
quant_export:null
fpgm_export:null
distill_export:null
export1:null
export2:null
##
infer_model:null
infer_export:tools/export_model.py -c test_tipc/configs/rec_mv3_none_bilstm_ctc_v2.0/rec_icdar15_train.yml -o
infer_quant:False
inference:tools/infer/predict_rec.py --rec_char_dict_path=./ppocr/utils/ic15_dict.txt --rec_image_shape="3,32,100"
--use_gpu:True|False
--enable_mkldnn:True|False
--cpu_threads:1|6
--rec_batch_num:1|6
--use_tensorrt:True|False
--precision:fp32|fp16|int8
--rec_model_dir:
--image_dir:./inference/rec_inference
--save_log_path:./test/output/
--benchmark:True
null:null
test_tipc/configs/rec_mv3_none_none_ctc_v2.0/rec_icdar15_train.yml
0 → 100644
浏览文件 @
bccba557
Global
:
use_gpu
:
True
epoch_num
:
72
log_smooth_window
:
20
print_batch_step
:
10
save_model_dir
:
./output/rec/mv3_none_none_ctc/
save_epoch_step
:
3
# evaluation is run every 2000 iterations
eval_batch_step
:
[
0
,
2000
]
cal_metric_during_train
:
True
pretrained_model
:
checkpoints
:
save_inference_dir
:
use_visualdl
:
False
infer_img
:
doc/imgs_words_en/word_10.png
# for data or label process
character_dict_path
:
max_text_length
:
25
infer_mode
:
False
use_space_char
:
False
save_res_path
:
./output/rec/predicts_mv3_none_none_ctc.txt
Optimizer
:
name
:
Adam
beta1
:
0.9
beta2
:
0.999
lr
:
learning_rate
:
0.0005
regularizer
:
name
:
'
L2'
factor
:
0
Architecture
:
model_type
:
rec
algorithm
:
Rosetta
Transform
:
Backbone
:
name
:
MobileNetV3
scale
:
0.5
model_name
:
large
Neck
:
name
:
SequenceEncoder
encoder_type
:
reshape
Head
:
name
:
CTCHead
fc_decay
:
0.0004
Loss
:
name
:
CTCLoss
PostProcess
:
name
:
CTCLabelDecode
Metric
:
name
:
RecMetric
main_indicator
:
acc
Train
:
dataset
:
name
:
SimpleDataSet
data_dir
:
./train_data/ic15_data/
label_file_list
:
[
"
./train_data/ic15_data/rec_gt_train.txt"
]
transforms
:
-
DecodeImage
:
# load image
img_mode
:
BGR
channel_first
:
False
-
CTCLabelEncode
:
# Class handling label
-
RecResizeImg
:
image_shape
:
[
3
,
32
,
100
]
-
KeepKeys
:
keep_keys
:
[
'
image'
,
'
label'
,
'
length'
]
# dataloader will return list in this order
loader
:
shuffle
:
False
batch_size_per_card
:
256
drop_last
:
True
num_workers
:
8
Eval
:
dataset
:
name
:
SimpleDataSet
data_dir
:
./train_data/ic15_data
label_file_list
:
[
"
./train_data/ic15_data/rec_gt_test.txt"
]
transforms
:
-
DecodeImage
:
# load image
img_mode
:
BGR
channel_first
:
False
-
CTCLabelEncode
:
# Class handling label
-
RecResizeImg
:
image_shape
:
[
3
,
32
,
100
]
-
KeepKeys
:
keep_keys
:
[
'
image'
,
'
label'
,
'
length'
]
# dataloader will return list in this order
loader
:
shuffle
:
False
drop_last
:
False
batch_size_per_card
:
256
num_workers
:
8
test_tipc/configs/rec_mv3_none_none_ctc_v2.0/train_infer_python.txt
0 → 100644
浏览文件 @
bccba557
===========================train_params===========================
model_name:rec_mv3_none_none_ctc_v2.0
python:python3.7
gpu_list:0|0,1
Global.use_gpu:True|True
Global.auto_cast:null
Global.epoch_num:lite_train_lite_infer=5|whole_train_whole_infer=100
Global.save_model_dir:./output/
Train.loader.batch_size_per_card:lite_train_lite_infer=128|whole_train_whole_infer=128
Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./inference/rec_inference
null:null
##
trainer:norm_train
norm_train:tools/train.py -c test_tipc/configs/rec_mv3_none_none_ctc_v2.0/rec_icdar15_train.yml -o
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c test_tipc/configs/rec_mv3_none_none_ctc_v2.0/rec_icdar15_train.yml -o
null:null
##
===========================infer_params===========================
Global.save_inference_dir:./output/
Global.pretrained_model:
norm_export:tools/export_model.py -c test_tipc/configs/rec_mv3_none_none_ctc_v2.0/rec_icdar15_train.yml -o
quant_export:null
fpgm_export:null
distill_export:null
export1:null
export2:null
##
infer_model:null
infer_export:tools/export_model.py -c test_tipc/configs/rec_mv3_none_none_ctc_v2.0/rec_icdar15_train.yml -o
infer_quant:False
inference:tools/infer/predict_rec.py --rec_char_dict_path=./ppocr/utils/ic15_dict.txt --rec_image_shape="3,32,100"
--use_gpu:True|False
--enable_mkldnn:True|False
--cpu_threads:1|6
--rec_batch_num:1|6
--use_tensorrt:True|False
--precision:fp32|fp16|int8
--rec_model_dir:
--image_dir:./inference/rec_inference
--save_log_path:./test/output/
--benchmark:True
null:null
test_tipc/configs/rec_mv3_tps_bilstm_ctc_v2.0/rec_icdar15_train.yml
0 → 100644
浏览文件 @
bccba557
Global
:
use_gpu
:
True
epoch_num
:
72
log_smooth_window
:
20
print_batch_step
:
10
save_model_dir
:
./output/rec/mv3_tps_bilstm_ctc/
save_epoch_step
:
3
# evaluation is run every 2000 iterations
eval_batch_step
:
[
0
,
2000
]
cal_metric_during_train
:
True
pretrained_model
:
checkpoints
:
save_inference_dir
:
use_visualdl
:
False
infer_img
:
doc/imgs_words_en/word_10.png
# for data or label process
character_dict_path
:
max_text_length
:
25
infer_mode
:
False
use_space_char
:
False
save_res_path
:
./output/rec/predicts_mv3_tps_bilstm_ctc.txt
Optimizer
:
name
:
Adam
beta1
:
0.9
beta2
:
0.999
lr
:
learning_rate
:
0.0005
regularizer
:
name
:
'
L2'
factor
:
0
Architecture
:
model_type
:
rec
algorithm
:
STARNet
Transform
:
name
:
TPS
num_fiducial
:
20
loc_lr
:
0.1
model_name
:
small
Backbone
:
name
:
MobileNetV3
scale
:
0.5
model_name
:
large
Neck
:
name
:
SequenceEncoder
encoder_type
:
rnn
hidden_size
:
96
Head
:
name
:
CTCHead
fc_decay
:
0.0004
Loss
:
name
:
CTCLoss
PostProcess
:
name
:
CTCLabelDecode
Metric
:
name
:
RecMetric
main_indicator
:
acc
Train
:
dataset
:
name
:
SimpleDataSet
data_dir
:
./train_data/ic15_data/
label_file_list
:
[
"
./train_data/ic15_data/rec_gt_train.txt"
]
transforms
:
-
DecodeImage
:
# load image
img_mode
:
BGR
channel_first
:
False
-
CTCLabelEncode
:
# Class handling label
-
RecResizeImg
:
image_shape
:
[
3
,
32
,
100
]
-
KeepKeys
:
keep_keys
:
[
'
image'
,
'
label'
,
'
length'
]
# dataloader will return list in this order
loader
:
shuffle
:
False
batch_size_per_card
:
256
drop_last
:
True
num_workers
:
8
Eval
:
dataset
:
name
:
SimpleDataSet
data_dir
:
./train_data/ic15_data
label_file_list
:
[
"
./train_data/ic15_data/rec_gt_test.txt"
]
transforms
:
-
DecodeImage
:
# load image
img_mode
:
BGR
channel_first
:
False
-
CTCLabelEncode
:
# Class handling label
-
RecResizeImg
:
image_shape
:
[
3
,
32
,
100
]
-
KeepKeys
:
keep_keys
:
[
'
image'
,
'
label'
,
'
length'
]
# dataloader will return list in this order
loader
:
shuffle
:
False
drop_last
:
False
batch_size_per_card
:
256
num_workers
:
4
test_tipc/configs/rec_mv3_tps_bilstm_ctc_v2.0/train_infer_python.txt
0 → 100644
浏览文件 @
bccba557
===========================train_params===========================
model_name:rec_mv3_tps_bilstm_ctc_v2.0
python:python3.7
gpu_list:0|0,1
Global.use_gpu:True|True
Global.auto_cast:null
Global.epoch_num:lite_train_lite_infer=5|whole_train_whole_infer=100
Global.save_model_dir:./output/
Train.loader.batch_size_per_card:lite_train_lite_infer=128|whole_train_whole_infer=128
Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./inference/rec_inference
null:null
##
trainer:norm_train
norm_train:tools/train.py -c test_tipc/configs/rec_mv3_tps_bilstm_ctc_v2.0/rec_icdar15_train.yml -o
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c test_tipc/configs/rec_mv3_tps_bilstm_ctc_v2.0/rec_icdar15_train.yml -o
null:null
##
===========================infer_params===========================
Global.save_inference_dir:./output/
Global.pretrained_model:
norm_export:tools/export_model.py -c test_tipc/configs/rec_mv3_tps_bilstm_ctc_v2.0/rec_icdar15_train.yml -o
quant_export:null
fpgm_export:null
distill_export:null
export1:null
export2:null
##
infer_model:null
infer_export:tools/export_model.py -c test_tipc/configs/rec_mv3_tps_bilstm_ctc_v2.0/rec_icdar15_train.yml -o
infer_quant:False
inference:tools/infer/predict_rec.py --rec_char_dict_path=./ppocr/utils/ic15_dict.txt --rec_image_shape="3,32,100"
--use_gpu:True|False
--enable_mkldnn:True|False
--cpu_threads:1|6
--rec_batch_num:1|6
--use_tensorrt:True|False
--precision:fp32|fp16|int8
--rec_model_dir:
--image_dir:./inference/rec_inference
--save_log_path:./test/output/
--benchmark:True
null:null
test_tipc/configs/rec_r34_vd_none_bilstm_ctc_v2.0/rec_icdar15_train.yml
0 → 100644
浏览文件 @
bccba557
Global
:
use_gpu
:
true
epoch_num
:
72
log_smooth_window
:
20
print_batch_step
:
10
save_model_dir
:
./output/rec/r34_vd_none_bilstm_ctc/
save_epoch_step
:
3
# evaluation is run every 2000 iterations
eval_batch_step
:
[
0
,
2000
]
cal_metric_during_train
:
True
pretrained_model
:
checkpoints
:
save_inference_dir
:
use_visualdl
:
False
infer_img
:
doc/imgs_words_en/word_10.png
# for data or label process
character_dict_path
:
max_text_length
:
25
infer_mode
:
False
use_space_char
:
False
save_res_path
:
./output/rec/predicts_r34_vd_none_bilstm_ctc.txt
Optimizer
:
name
:
Adam
beta1
:
0.9
beta2
:
0.999
lr
:
learning_rate
:
0.0005
regularizer
:
name
:
'
L2'
factor
:
0
Architecture
:
model_type
:
rec
algorithm
:
CRNN
Transform
:
Backbone
:
name
:
ResNet
layers
:
34
Neck
:
name
:
SequenceEncoder
encoder_type
:
rnn
hidden_size
:
256
Head
:
name
:
CTCHead
fc_decay
:
0
Loss
:
name
:
CTCLoss
PostProcess
:
name
:
CTCLabelDecode
Metric
:
name
:
RecMetric
main_indicator
:
acc
Train
:
dataset
:
name
:
SimpleDataSet
data_dir
:
./train_data/ic15_data/
label_file_list
:
[
"
./train_data/ic15_data/rec_gt_train.txt"
]
transforms
:
-
DecodeImage
:
# load image
img_mode
:
BGR
channel_first
:
False
-
CTCLabelEncode
:
# Class handling label
-
RecResizeImg
:
image_shape
:
[
3
,
32
,
100
]
-
KeepKeys
:
keep_keys
:
[
'
image'
,
'
label'
,
'
length'
]
# dataloader will return list in this order
loader
:
shuffle
:
True
batch_size_per_card
:
256
drop_last
:
True
num_workers
:
8
Eval
:
dataset
:
name
:
SimpleDataSet
data_dir
:
./train_data/ic15_data
label_file_list
:
[
"
./train_data/ic15_data/rec_gt_test.txt"
]
transforms
:
-
DecodeImage
:
# load image
img_mode
:
BGR
channel_first
:
False
-
CTCLabelEncode
:
# Class handling label
-
RecResizeImg
:
image_shape
:
[
3
,
32
,
100
]
-
KeepKeys
:
keep_keys
:
[
'
image'
,
'
label'
,
'
length'
]
# dataloader will return list in this order
loader
:
shuffle
:
False
drop_last
:
False
batch_size_per_card
:
256
num_workers
:
4
test_tipc/configs/rec_r34_vd_none_bilstm_ctc_v2.0/train_infer_python.txt
0 → 100644
浏览文件 @
bccba557
===========================train_params===========================
model_name:rec_r34_vd_none_bilstm_ctc_v2.0
python:python3.7
gpu_list:0|0,1
Global.use_gpu:True|True
Global.auto_cast:null
Global.epoch_num:lite_train_lite_infer=5|whole_train_whole_infer=100
Global.save_model_dir:./output/
Train.loader.batch_size_per_card:lite_train_lite_infer=128|whole_train_whole_infer=128
Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./inference/rec_inference
null:null
##
trainer:norm_train
norm_train:tools/train.py -c test_tipc/configs/rec_r34_vd_none_bilstm_ctc_v2.0/rec_icdar15_train.yml -o
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c test_tipc/configs/rec_r34_vd_none_bilstm_ctc_v2.0/rec_icdar15_train.yml -o
null:null
##
===========================infer_params===========================
Global.save_inference_dir:./output/
Global.pretrained_model:
norm_export:tools/export_model.py -c test_tipc/configs/rec_r34_vd_none_bilstm_ctc_v2.0/rec_icdar15_train.yml -o
quant_export:null
fpgm_export:null
distill_export:null
export1:null
export2:null
##
infer_model:null
infer_export:tools/export_model.py -c test_tipc/configs/rec_r34_vd_none_bilstm_ctc_v2.0/rec_icdar15_train.yml -o
infer_quant:False
inference:tools/infer/predict_rec.py --rec_char_dict_path=./ppocr/utils/ic15_dict.txt --rec_image_shape="3,32,100"
--use_gpu:True|False
--enable_mkldnn:True|False
--cpu_threads:1|6
--rec_batch_num:1|6
--use_tensorrt:True|False
--precision:fp32|fp16|int8
--rec_model_dir:
--image_dir:./inference/rec_inference
--save_log_path:./test/output/
--benchmark:True
null:null
test_tipc/configs/rec_r34_vd_none_none_ctc_v2.0/rec_icdar15_train.yml
0 → 100644
浏览文件 @
bccba557
Global
:
use_gpu
:
true
epoch_num
:
72
log_smooth_window
:
20
print_batch_step
:
10
save_model_dir
:
./output/rec/r34_vd_none_none_ctc/
save_epoch_step
:
3
# evaluation is run every 2000 iterations
eval_batch_step
:
[
0
,
2000
]
cal_metric_during_train
:
True
pretrained_model
:
checkpoints
:
save_inference_dir
:
use_visualdl
:
False
infer_img
:
doc/imgs_words_en/word_10.png
# for data or label process
character_dict_path
:
max_text_length
:
25
infer_mode
:
False
use_space_char
:
False
save_res_path
:
./output/rec/predicts_r34_vd_none_none_ctc.txt
Optimizer
:
name
:
Adam
beta1
:
0.9
beta2
:
0.999
lr
:
learning_rate
:
0.0005
regularizer
:
name
:
'
L2'
factor
:
0
Architecture
:
model_type
:
rec
algorithm
:
Rosetta
Backbone
:
name
:
ResNet
layers
:
34
Neck
:
name
:
SequenceEncoder
encoder_type
:
reshape
Head
:
name
:
CTCHead
fc_decay
:
0.0004
Loss
:
name
:
CTCLoss
PostProcess
:
name
:
CTCLabelDecode
Metric
:
name
:
RecMetric
main_indicator
:
acc
Train
:
dataset
:
name
:
SimpleDataSet
data_dir
:
./train_data/ic15_data/
label_file_list
:
[
"
./train_data/ic15_data/rec_gt_train.txt"
]
transforms
:
-
DecodeImage
:
# load image
img_mode
:
BGR
channel_first
:
False
-
CTCLabelEncode
:
# Class handling label
-
RecResizeImg
:
image_shape
:
[
3
,
32
,
100
]
-
KeepKeys
:
keep_keys
:
[
'
image'
,
'
label'
,
'
length'
]
# dataloader will return list in this order
loader
:
shuffle
:
True
batch_size_per_card
:
256
drop_last
:
True
num_workers
:
8
Eval
:
dataset
:
name
:
SimpleDataSet
data_dir
:
./train_data/ic15_data
label_file_list
:
[
"
./train_data/ic15_data/rec_gt_test.txt"
]
transforms
:
-
DecodeImage
:
# load image
img_mode
:
BGR
channel_first
:
False
-
CTCLabelEncode
:
# Class handling label
-
RecResizeImg
:
image_shape
:
[
3
,
32
,
100
]
-
KeepKeys
:
keep_keys
:
[
'
image'
,
'
label'
,
'
length'
]
# dataloader will return list in this order
loader
:
shuffle
:
False
drop_last
:
False
batch_size_per_card
:
256
num_workers
:
4
test_tipc/configs/rec_r34_vd_none_none_ctc_v2.0/train_infer_python.txt
0 → 100644
浏览文件 @
bccba557
===========================train_params===========================
model_name:rec_r34_vd_none_none_ctc_v2.0
python:python3.7
gpu_list:0|0,1
Global.use_gpu:True|True
Global.auto_cast:null
Global.epoch_num:lite_train_lite_infer=5|whole_train_whole_infer=100
Global.save_model_dir:./output/
Train.loader.batch_size_per_card:lite_train_lite_infer=128|whole_train_whole_infer=128
Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./inference/rec_inference
null:null
##
trainer:norm_train
norm_train:tools/train.py -c test_tipc/configs/rec_r34_vd_none_none_ctc_v2.0/rec_icdar15_train.yml -o
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c test_tipc/configs/rec_r34_vd_none_none_ctc_v2.0/rec_icdar15_train.yml -o
null:null
##
===========================infer_params===========================
Global.save_inference_dir:./output/
Global.pretrained_model:
norm_export:tools/export_model.py -c test_tipc/configs/rec_r34_vd_none_none_ctc_v2.0/rec_icdar15_train.yml -o
quant_export:null
fpgm_export:null
distill_export:null
export1:null
export2:null
##
infer_model:null
infer_export:tools/export_model.py -c test_tipc/configs/rec_r34_vd_none_none_ctc_v2.0/rec_icdar15_train.yml -o
infer_quant:False
inference:tools/infer/predict_rec.py --rec_char_dict_path=./ppocr/utils/ic15_dict.txt --rec_image_shape="3,32,100"
--use_gpu:True|False
--enable_mkldnn:True|False
--cpu_threads:1|6
--rec_batch_num:1|6
--use_tensorrt:True|False
--precision:fp32|fp16|int8
--rec_model_dir:
--image_dir:./inference/rec_inference
--save_log_path:./test/output/
--benchmark:True
null:null
test_tipc/configs/rec_r34_vd_tps_bilstm_ctc_v2.0/rec_icdar15_train.yml
0 → 100644
浏览文件 @
bccba557
Global
:
use_gpu
:
true
epoch_num
:
72
log_smooth_window
:
20
print_batch_step
:
10
save_model_dir
:
./output/rec/r34_vd_tps_bilstm_ctc/
save_epoch_step
:
3
# evaluation is run every 2000 iterations
eval_batch_step
:
[
0
,
2000
]
cal_metric_during_train
:
True
pretrained_model
:
checkpoints
:
save_inference_dir
:
use_visualdl
:
False
infer_img
:
doc/imgs_words_en/word_10.png
# for data or label process
character_dict_path
:
max_text_length
:
25
infer_mode
:
False
use_space_char
:
False
save_res_path
:
./output/rec/predicts_r34_vd_tps_bilstm_ctc.txt
Optimizer
:
name
:
Adam
beta1
:
0.9
beta2
:
0.999
lr
:
learning_rate
:
0.0005
regularizer
:
name
:
'
L2'
factor
:
0
Architecture
:
model_type
:
rec
algorithm
:
STARNet
Transform
:
name
:
TPS
num_fiducial
:
20
loc_lr
:
0.1
model_name
:
large
Backbone
:
name
:
ResNet
layers
:
34
Neck
:
name
:
SequenceEncoder
encoder_type
:
rnn
hidden_size
:
256
Head
:
name
:
CTCHead
fc_decay
:
0
Loss
:
name
:
CTCLoss
PostProcess
:
name
:
CTCLabelDecode
Metric
:
name
:
RecMetric
main_indicator
:
acc
Train
:
dataset
:
name
:
SimpleDataSet
data_dir
:
./train_data/ic15_data/
label_file_list
:
[
"
./train_data/ic15_data/rec_gt_train.txt"
]
transforms
:
-
DecodeImage
:
# load image
img_mode
:
BGR
channel_first
:
False
-
CTCLabelEncode
:
# Class handling label
-
RecResizeImg
:
image_shape
:
[
3
,
32
,
100
]
-
KeepKeys
:
keep_keys
:
[
'
image'
,
'
label'
,
'
length'
]
# dataloader will return list in this order
loader
:
shuffle
:
True
batch_size_per_card
:
256
drop_last
:
True
num_workers
:
8
Eval
:
dataset
:
name
:
SimpleDataSet
data_dir
:
./train_data/ic15_data
label_file_list
:
[
"
./train_data/ic15_data/rec_gt_test.txt"
]
transforms
:
-
DecodeImage
:
# load image
img_mode
:
BGR
channel_first
:
False
-
CTCLabelEncode
:
# Class handling label
-
RecResizeImg
:
image_shape
:
[
3
,
32
,
100
]
-
KeepKeys
:
keep_keys
:
[
'
image'
,
'
label'
,
'
length'
]
# dataloader will return list in this order
loader
:
shuffle
:
False
drop_last
:
False
batch_size_per_card
:
256
num_workers
:
4
test_tipc/configs/rec_r34_vd_tps_bilstm_ctc_v2.0/train_infer_python.txt
0 → 100644
浏览文件 @
bccba557
===========================train_params===========================
model_name:rec_r34_vd_tps_bilstm_ctc_v2.0
python:python3.7
gpu_list:0|0,1
Global.use_gpu:True|True
Global.auto_cast:null
Global.epoch_num:lite_train_lite_infer=5|whole_train_whole_infer=100
Global.save_model_dir:./output/
Train.loader.batch_size_per_card:lite_train_lite_infer=128|whole_train_whole_infer=128
Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./inference/rec_inference
null:null
##
trainer:norm_train
norm_train:tools/train.py -c test_tipc/configs/rec_r34_vd_tps_bilstm_ctc_v2.0/rec_icdar15_train.yml -o
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c test_tipc/configs/rec_r34_vd_tps_bilstm_ctc_v2.0/rec_icdar15_train.yml -o
null:null
##
===========================infer_params===========================
Global.save_inference_dir:./output/
Global.pretrained_model:
norm_export:tools/export_model.py -c test_tipc/configs/rec_r34_vd_tps_bilstm_ctc_v2.0/rec_icdar15_train.yml -o
quant_export:null
fpgm_export:null
distill_export:null
export1:null
export2:null
##
infer_model:null
infer_export:tools/export_model.py -c test_tipc/configs/rec_r34_vd_tps_bilstm_ctc_v2.0/rec_icdar15_train.yml -o
infer_quant:False
inference:tools/infer/predict_rec.py --rec_char_dict_path=./ppocr/utils/ic15_dict.txt --rec_image_shape="3,32,100"
--use_gpu:True|False
--enable_mkldnn:True|False
--cpu_threads:1|6
--rec_batch_num:1|6
--use_tensorrt:True|False
--precision:fp32|fp16|int8
--rec_model_dir:
--image_dir:./inference/rec_inference
--save_log_path:./test/output/
--benchmark:True
null:null
test_tipc/prepare.sh
浏览文件 @
bccba557
...
...
@@ -111,14 +111,12 @@ elif [ ${MODE} = "whole_infer" ];then
wget
-nc
-P
./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ch_det_data_50.tar
--no-check-certificate
wget
-nc
-P
./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar
--no-check-certificate
cd
./inference
&&
tar
xf ch_ppocr_server_v2.0_det_infer.tar
&&
tar
xf ch_ppocr_server_v2.0_rec_infer.tar
&&
tar
xf ch_det_data_50.tar
&&
cd
../
elif
[
${
model_name
}
=
"ocr_rec"
]
;
then
rm
-rf
./train_data/ic15_data
elif
[
${
model_name
}
=
"ch_ppocr_mobile_v2.0_rec"
]
;
then
eval_model_name
=
"ch_ppocr_mobile_v2.0_rec_infer"
wget
-nc
-P
./inference/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/rec_inference.tar
--no-check-certificate
wget
-nc
-P
./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar
--no-check-certificate
cd
./inference
&&
tar
xf
${
eval_model_name
}
.tar
&&
tar
xf rec_inference.tar
&&
cd
../
elif
[
${
model_name
}
=
"ocr_server_rec"
]
;
then
rm
-rf
./train_data/ic15_data
elif
[
${
model_name
}
=
"ch_ppocr_server_v2.0_rec"
]
;
then
eval_model_name
=
"ch_ppocr_server_v2.0_rec_infer"
wget
-nc
-P
./inference/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/rec_inference.tar
--no-check-certificate
wget
-nc
-P
./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar
--no-check-certificate
...
...
@@ -163,7 +161,7 @@ if [ ${MODE} = "cpp_infer" ];then
wget
-nc
-P
./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ch_det_data_50.tar
--no-check-certificate
wget
-nc
-P
./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar
--no-check-certificate
cd
./inference
&&
tar
xf ch_ppocr_mobile_v2.0_det_infer.tar
&&
tar
xf ch_det_data_50.tar
&&
cd
../
elif
[
${
model_name
}
=
"
ocr
_rec"
]
;
then
elif
[
${
model_name
}
=
"
ch_ppocr_mobile_v2.0
_rec"
]
;
then
wget
-nc
-P
./inference/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/rec_inference.tar
--no-check-certificate
wget
-nc
-P
./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar
--no-check-certificate
cd
./inference
&&
tar
xf ch_ppocr_mobile_v2.0_rec_infer.tar
&&
tar
xf rec_inference.tar
&&
cd
../
...
...
test_tipc/test_train_inference_python.sh
浏览文件 @
bccba557
...
...
@@ -226,7 +226,7 @@ if [ ${MODE} = "whole_infer" ] || [ ${MODE} = "klquant_whole_infer" ]; then
set_save_infer_key
=
$(
func_set_params
"
${
save_infer_key
}
"
"
${
save_infer_dir
}
"
)
export_cmd
=
"
${
python
}
${
infer_run_exports
[Count]
}
${
set_export_weight
}
${
set_save_infer_key
}
"
echo
${
infer_run_exports
[Count]
}
echo
$export_cmd
echo
$export_cmd
eval
$export_cmd
status_export
=
$?
status_check
$status_export
"
${
export_cmd
}
"
"
${
status_log
}
"
...
...
@@ -336,7 +336,7 @@ else
set_eval_pretrain
=
$(
func_set_params
"
${
pretrain_model_key
}
"
"
${
save_log
}
/
${
train_model_name
}
"
)
# save norm trained models to set pretrain for pact training and fpgm training
if
[
${
trainer
}
=
${
trainer_norm
}
]
&&
[
${
nodes
}
-le
1]
;
then
if
[
${
trainer
}
=
${
trainer_norm
}
]
&&
[
${
nodes
}
-le
1
]
;
then
load_norm_train_model
=
${
set_eval_pretrain
}
fi
# run eval
...
...
@@ -359,7 +359,7 @@ else
#run inference
eval
$env
save_infer_path
=
"
${
save_log
}
"
if
[
${
inference_dir
}
!=
"null"
]
&&
[
${
inference_dir
}
!=
'##'
]
;
then
if
[
[
${
inference_dir
}
!=
"null"
]]
&&
[[
${
inference_dir
}
!=
'##'
]
]
;
then
infer_model_dir
=
"
${
save_infer_path
}
/
${
inference_dir
}
"
else
infer_model_dir
=
${
save_infer_path
}
...
...
tools/infer/predict_rec.py
浏览文件 @
bccba557
...
...
@@ -91,7 +91,7 @@ class TextRecognizer(object):
time_keys
=
[
'preprocess_time'
,
'inference_time'
,
'postprocess_time'
],
warmup
=
2
,
warmup
=
0
,
logger
=
logger
)
def
resize_norm_img
(
self
,
img
,
max_wh_ratio
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录