Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
weixin_41840029
PaddleOCR
提交
bc1ad207
P
PaddleOCR
项目概览
weixin_41840029
/
PaddleOCR
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleOCR
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleOCR
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
bc1ad207
编写于
9月 03, 2020
作者:
T
tink2123
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
support srn inference
上级
b626aa3e
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
187 addition
and
29 deletion
+187
-29
ppocr/modeling/architectures/rec_model.py
ppocr/modeling/architectures/rec_model.py
+9
-7
tools/infer/predict_rec.py
tools/infer/predict_rec.py
+151
-12
tools/infer/utility.py
tools/infer/utility.py
+8
-5
tools/infer_rec.py
tools/infer_rec.py
+5
-2
tools/program.py
tools/program.py
+14
-3
未找到文件。
ppocr/modeling/architectures/rec_model.py
浏览文件 @
bc1ad207
...
@@ -136,7 +136,7 @@ class RecModel(object):
...
@@ -136,7 +136,7 @@ class RecModel(object):
else
:
else
:
labels
=
None
labels
=
None
loader
=
None
loader
=
None
if
self
.
char_type
==
"ch"
and
self
.
infer_img
:
if
self
.
char_type
==
"ch"
and
self
.
infer_img
and
self
.
loss_type
!=
"srn"
:
image_shape
[
-
1
]
=
-
1
image_shape
[
-
1
]
=
-
1
if
self
.
tps
!=
None
:
if
self
.
tps
!=
None
:
logger
.
info
(
logger
.
info
(
...
@@ -172,16 +172,13 @@ class RecModel(object):
...
@@ -172,16 +172,13 @@ class RecModel(object):
self
.
max_text_length
self
.
max_text_length
],
],
dtype
=
"float32"
)
dtype
=
"float32"
)
feed_list
=
[
image
,
encoder_word_pos
,
gsrm_word_pos
,
gsrm_slf_attn_bias1
,
gsrm_slf_attn_bias2
]
labels
=
{
labels
=
{
'encoder_word_pos'
:
encoder_word_pos
,
'encoder_word_pos'
:
encoder_word_pos
,
'gsrm_word_pos'
:
gsrm_word_pos
,
'gsrm_word_pos'
:
gsrm_word_pos
,
'gsrm_slf_attn_bias1'
:
gsrm_slf_attn_bias1
,
'gsrm_slf_attn_bias1'
:
gsrm_slf_attn_bias1
,
'gsrm_slf_attn_bias2'
:
gsrm_slf_attn_bias2
'gsrm_slf_attn_bias2'
:
gsrm_slf_attn_bias2
}
}
return
image
,
labels
,
loader
return
image
,
labels
,
loader
def
__call__
(
self
,
mode
):
def
__call__
(
self
,
mode
):
...
@@ -218,8 +215,13 @@ class RecModel(object):
...
@@ -218,8 +215,13 @@ class RecModel(object):
if
self
.
loss_type
==
"ctc"
:
if
self
.
loss_type
==
"ctc"
:
predict
=
fluid
.
layers
.
softmax
(
predict
)
predict
=
fluid
.
layers
.
softmax
(
predict
)
if
self
.
loss_type
==
"srn"
:
if
self
.
loss_type
==
"srn"
:
raise
Exception
(
return
[
"Warning! SRN does not support export model currently"
)
image
,
labels
,
{
'decoded_out'
:
decoded_out
,
'predicts'
:
predict
}
]
return
[
image
,
{
'decoded_out'
:
decoded_out
,
'predicts'
:
predict
}]
return
[
image
,
{
'decoded_out'
:
decoded_out
,
'predicts'
:
predict
}]
else
:
else
:
predict
=
predicts
[
'predict'
]
predict
=
predicts
[
'predict'
]
...
...
tools/infer/predict_rec.py
浏览文件 @
bc1ad207
...
@@ -26,6 +26,7 @@ import copy
...
@@ -26,6 +26,7 @@ import copy
import
numpy
as
np
import
numpy
as
np
import
math
import
math
import
time
import
time
import
paddle.fluid
as
fluid
from
ppocr.utils.character
import
CharacterOps
from
ppocr.utils.character
import
CharacterOps
...
@@ -37,18 +38,22 @@ class TextRecognizer(object):
...
@@ -37,18 +38,22 @@ class TextRecognizer(object):
self
.
character_type
=
args
.
rec_char_type
self
.
character_type
=
args
.
rec_char_type
self
.
rec_batch_num
=
args
.
rec_batch_num
self
.
rec_batch_num
=
args
.
rec_batch_num
self
.
rec_algorithm
=
args
.
rec_algorithm
self
.
rec_algorithm
=
args
.
rec_algorithm
self
.
text_len
=
args
.
max_text_length
char_ops_params
=
{
char_ops_params
=
{
"character_type"
:
args
.
rec_char_type
,
"character_type"
:
args
.
rec_char_type
,
"character_dict_path"
:
args
.
rec_char_dict_path
,
"character_dict_path"
:
args
.
rec_char_dict_path
,
"use_space_char"
:
args
.
use_space_char
,
"use_space_char"
:
args
.
use_space_char
,
"max_text_length"
:
args
.
max_text_length
"max_text_length"
:
args
.
max_text_length
}
}
if
self
.
rec_algorithm
!=
"RARE"
:
if
self
.
rec_algorithm
in
[
"CRNN"
,
"Rosetta"
,
"STAR-Net"
]
:
char_ops_params
[
'loss_type'
]
=
'ctc'
char_ops_params
[
'loss_type'
]
=
'ctc'
self
.
loss_type
=
'ctc'
self
.
loss_type
=
'ctc'
el
se
:
el
if
self
.
rec_algorithm
==
"RARE"
:
char_ops_params
[
'loss_type'
]
=
'attention'
char_ops_params
[
'loss_type'
]
=
'attention'
self
.
loss_type
=
'attention'
self
.
loss_type
=
'attention'
elif
self
.
rec_algorithm
==
"SRN"
:
char_ops_params
[
'loss_type'
]
=
'srn'
self
.
loss_type
=
'srn'
self
.
char_ops
=
CharacterOps
(
char_ops_params
)
self
.
char_ops
=
CharacterOps
(
char_ops_params
)
def
resize_norm_img
(
self
,
img
,
max_wh_ratio
):
def
resize_norm_img
(
self
,
img
,
max_wh_ratio
):
...
@@ -71,6 +76,83 @@ class TextRecognizer(object):
...
@@ -71,6 +76,83 @@ class TextRecognizer(object):
padding_im
[:,
:,
0
:
resized_w
]
=
resized_image
padding_im
[:,
:,
0
:
resized_w
]
=
resized_image
return
padding_im
return
padding_im
def
resize_norm_img_srn
(
self
,
img
,
image_shape
):
imgC
,
imgH
,
imgW
=
image_shape
img_black
=
np
.
zeros
((
imgH
,
imgW
))
im_hei
=
img
.
shape
[
0
]
im_wid
=
img
.
shape
[
1
]
if
im_wid
<=
im_hei
*
1
:
img_new
=
cv2
.
resize
(
img
,
(
imgH
*
1
,
imgH
))
elif
im_wid
<=
im_hei
*
2
:
img_new
=
cv2
.
resize
(
img
,
(
imgH
*
2
,
imgH
))
elif
im_wid
<=
im_hei
*
3
:
img_new
=
cv2
.
resize
(
img
,
(
imgH
*
3
,
imgH
))
else
:
img_new
=
cv2
.
resize
(
img
,
(
imgW
,
imgH
))
img_np
=
np
.
asarray
(
img_new
)
img_np
=
cv2
.
cvtColor
(
img_np
,
cv2
.
COLOR_BGR2GRAY
)
img_black
[:,
0
:
img_np
.
shape
[
1
]]
=
img_np
img_black
=
img_black
[:,
:,
np
.
newaxis
]
row
,
col
,
c
=
img_black
.
shape
c
=
1
return
np
.
reshape
(
img_black
,
(
c
,
row
,
col
)).
astype
(
np
.
float32
)
def
srn_other_inputs
(
self
,
image_shape
,
num_heads
,
max_text_length
,
char_num
):
imgC
,
imgH
,
imgW
=
image_shape
feature_dim
=
int
((
imgH
/
8
)
*
(
imgW
/
8
))
encoder_word_pos
=
np
.
array
(
range
(
0
,
feature_dim
)).
reshape
(
(
feature_dim
,
1
)).
astype
(
'int64'
)
gsrm_word_pos
=
np
.
array
(
range
(
0
,
max_text_length
)).
reshape
(
(
max_text_length
,
1
)).
astype
(
'int64'
)
gsrm_attn_bias_data
=
np
.
ones
((
1
,
max_text_length
,
max_text_length
))
gsrm_slf_attn_bias1
=
np
.
triu
(
gsrm_attn_bias_data
,
1
).
reshape
(
[
-
1
,
1
,
max_text_length
,
max_text_length
])
gsrm_slf_attn_bias1
=
np
.
tile
(
gsrm_slf_attn_bias1
,
[
1
,
num_heads
,
1
,
1
]).
astype
(
'float32'
)
*
[
-
1e9
]
gsrm_slf_attn_bias2
=
np
.
tril
(
gsrm_attn_bias_data
,
-
1
).
reshape
(
[
-
1
,
1
,
max_text_length
,
max_text_length
])
gsrm_slf_attn_bias2
=
np
.
tile
(
gsrm_slf_attn_bias2
,
[
1
,
num_heads
,
1
,
1
]).
astype
(
'float32'
)
*
[
-
1e9
]
encoder_word_pos
=
encoder_word_pos
[
np
.
newaxis
,
:]
gsrm_word_pos
=
gsrm_word_pos
[
np
.
newaxis
,
:]
return
[
encoder_word_pos
,
gsrm_word_pos
,
gsrm_slf_attn_bias1
,
gsrm_slf_attn_bias2
]
def
process_image_srn
(
self
,
img
,
image_shape
,
num_heads
,
max_text_length
,
char_ops
=
None
):
norm_img
=
self
.
resize_norm_img_srn
(
img
,
image_shape
)
norm_img
=
norm_img
[
np
.
newaxis
,
:]
char_num
=
char_ops
.
get_char_num
()
[
encoder_word_pos
,
gsrm_word_pos
,
gsrm_slf_attn_bias1
,
gsrm_slf_attn_bias2
]
=
\
self
.
srn_other_inputs
(
image_shape
,
num_heads
,
max_text_length
,
char_num
)
gsrm_slf_attn_bias1
=
gsrm_slf_attn_bias1
.
astype
(
np
.
float32
)
gsrm_slf_attn_bias2
=
gsrm_slf_attn_bias2
.
astype
(
np
.
float32
)
return
(
norm_img
,
encoder_word_pos
,
gsrm_word_pos
,
gsrm_slf_attn_bias1
,
gsrm_slf_attn_bias2
)
def
__call__
(
self
,
img_list
):
def
__call__
(
self
,
img_list
):
img_num
=
len
(
img_list
)
img_num
=
len
(
img_list
)
# Calculate the aspect ratio of all text bars
# Calculate the aspect ratio of all text bars
...
@@ -80,7 +162,7 @@ class TextRecognizer(object):
...
@@ -80,7 +162,7 @@ class TextRecognizer(object):
# Sorting can speed up the recognition process
# Sorting can speed up the recognition process
indices
=
np
.
argsort
(
np
.
array
(
width_list
))
indices
=
np
.
argsort
(
np
.
array
(
width_list
))
#
rec_res = []
#rec_res = []
rec_res
=
[[
''
,
0.0
]]
*
img_num
rec_res
=
[[
''
,
0.0
]]
*
img_num
batch_num
=
self
.
rec_batch_num
batch_num
=
self
.
rec_batch_num
predict_time
=
0
predict_time
=
0
...
@@ -94,16 +176,52 @@ class TextRecognizer(object):
...
@@ -94,16 +176,52 @@ class TextRecognizer(object):
wh_ratio
=
w
*
1.0
/
h
wh_ratio
=
w
*
1.0
/
h
max_wh_ratio
=
max
(
max_wh_ratio
,
wh_ratio
)
max_wh_ratio
=
max
(
max_wh_ratio
,
wh_ratio
)
for
ino
in
range
(
beg_img_no
,
end_img_no
):
for
ino
in
range
(
beg_img_no
,
end_img_no
):
# norm_img = self.resize_norm_img(img_list[ino], max_wh_ratio)
if
self
.
loss_type
!=
"srn"
:
norm_img
=
self
.
resize_norm_img
(
img_list
[
indices
[
ino
]],
norm_img
=
self
.
resize_norm_img
(
img_list
[
indices
[
ino
]],
max_wh_ratio
)
max_wh_ratio
)
norm_img
=
norm_img
[
np
.
newaxis
,
:]
norm_img
=
norm_img
[
np
.
newaxis
,
:]
norm_img_batch
.
append
(
norm_img
)
norm_img_batch
.
append
(
norm_img
)
norm_img_batch
=
np
.
concatenate
(
norm_img_batch
)
else
:
norm_img_batch
=
norm_img_batch
.
copy
()
norm_img
=
self
.
process_image_srn
(
img_list
[
indices
[
ino
]],
self
.
rec_image_shape
,
8
,
25
,
self
.
char_ops
)
encoder_word_pos_list
=
[]
gsrm_word_pos_list
=
[]
gsrm_slf_attn_bias1_list
=
[]
gsrm_slf_attn_bias2_list
=
[]
encoder_word_pos_list
.
append
(
norm_img
[
1
])
gsrm_word_pos_list
.
append
(
norm_img
[
2
])
gsrm_slf_attn_bias1_list
.
append
(
norm_img
[
3
])
gsrm_slf_attn_bias2_list
.
append
(
norm_img
[
4
])
norm_img_batch
.
append
(
norm_img
[
0
])
norm_img_batch
=
np
.
concatenate
(
norm_img_batch
,
axis
=
0
)
encoder_word_pos_list
=
np
.
concatenate
(
encoder_word_pos_list
)
gsrm_word_pos_list
=
np
.
concatenate
(
gsrm_word_pos_list
)
gsrm_slf_attn_bias1_list
=
np
.
concatenate
(
gsrm_slf_attn_bias1_list
)
gsrm_slf_attn_bias2_list
=
np
.
concatenate
(
gsrm_slf_attn_bias2_list
)
starttime
=
time
.
time
()
starttime
=
time
.
time
()
self
.
input_tensor
.
copy_from_cpu
(
norm_img_batch
)
self
.
predictor
.
zero_copy_run
()
norm_img_batch
=
fluid
.
core
.
PaddleTensor
(
norm_img_batch
)
encoder_word_pos_list
=
fluid
.
core
.
PaddleTensor
(
encoder_word_pos_list
)
gsrm_word_pos_list
=
fluid
.
core
.
PaddleTensor
(
gsrm_word_pos_list
)
gsrm_slf_attn_bias1_list
=
fluid
.
core
.
PaddleTensor
(
gsrm_slf_attn_bias1_list
)
gsrm_slf_attn_bias2_list
=
fluid
.
core
.
PaddleTensor
(
gsrm_slf_attn_bias2_list
)
inputs
=
[
norm_img_batch
,
encoder_word_pos_list
,
gsrm_slf_attn_bias1_list
,
gsrm_slf_attn_bias2_list
,
gsrm_word_pos_list
]
self
.
predictor
.
run
(
inputs
)
if
self
.
loss_type
==
"ctc"
:
if
self
.
loss_type
==
"ctc"
:
rec_idx_batch
=
self
.
output_tensors
[
0
].
copy_to_cpu
()
rec_idx_batch
=
self
.
output_tensors
[
0
].
copy_to_cpu
()
...
@@ -128,6 +246,26 @@ class TextRecognizer(object):
...
@@ -128,6 +246,26 @@ class TextRecognizer(object):
score
=
np
.
mean
(
probs
[
valid_ind
,
ind
[
valid_ind
]])
score
=
np
.
mean
(
probs
[
valid_ind
,
ind
[
valid_ind
]])
# rec_res.append([preds_text, score])
# rec_res.append([preds_text, score])
rec_res
[
indices
[
beg_img_no
+
rno
]]
=
[
preds_text
,
score
]
rec_res
[
indices
[
beg_img_no
+
rno
]]
=
[
preds_text
,
score
]
elif
self
.
loss_type
==
'srn'
:
rec_idx_batch
=
self
.
output_tensors
[
0
].
copy_to_cpu
()
probs
=
self
.
output_tensors
[
1
].
copy_to_cpu
()
char_num
=
self
.
char_ops
.
get_char_num
()
preds
=
rec_idx_batch
.
reshape
(
-
1
)
elapse
=
time
.
time
()
-
starttime
predict_time
+=
elapse
total_preds
=
preds
.
copy
()
for
ino
in
range
(
int
(
len
(
rec_idx_batch
)
/
self
.
text_len
)):
preds
=
total_preds
[
ino
*
self
.
text_len
:(
ino
+
1
)
*
self
.
text_len
]
ind
=
np
.
argmax
(
probs
,
axis
=
1
)
valid_ind
=
np
.
where
(
preds
!=
int
(
char_num
-
1
))[
0
]
if
len
(
valid_ind
)
==
0
:
continue
score
=
np
.
mean
(
probs
[
valid_ind
,
ind
[
valid_ind
]])
preds
=
preds
[:
valid_ind
[
-
1
]
+
1
]
preds_text
=
self
.
char_ops
.
decode
(
preds
)
rec_res
[
indices
[
beg_img_no
+
ino
]]
=
[
preds_text
,
score
]
else
:
else
:
rec_idx_batch
=
self
.
output_tensors
[
0
].
copy_to_cpu
()
rec_idx_batch
=
self
.
output_tensors
[
0
].
copy_to_cpu
()
predict_batch
=
self
.
output_tensors
[
1
].
copy_to_cpu
()
predict_batch
=
self
.
output_tensors
[
1
].
copy_to_cpu
()
...
@@ -162,6 +300,7 @@ def main(args):
...
@@ -162,6 +300,7 @@ def main(args):
continue
continue
valid_image_file_list
.
append
(
image_file
)
valid_image_file_list
.
append
(
image_file
)
img_list
.
append
(
img
)
img_list
.
append
(
img
)
try
:
try
:
rec_res
,
predict_time
=
text_recognizer
(
img_list
)
rec_res
,
predict_time
=
text_recognizer
(
img_list
)
except
Exception
as
e
:
except
Exception
as
e
:
...
...
tools/infer/utility.py
浏览文件 @
bc1ad207
...
@@ -59,10 +59,10 @@ def parse_args():
...
@@ -59,10 +59,10 @@ def parse_args():
parser
.
add_argument
(
"--det_sast_polygon"
,
type
=
bool
,
default
=
False
)
parser
.
add_argument
(
"--det_sast_polygon"
,
type
=
bool
,
default
=
False
)
#params for text recognizer
#params for text recognizer
parser
.
add_argument
(
"--rec_algorithm"
,
type
=
str
,
default
=
'
CRN
N'
)
parser
.
add_argument
(
"--rec_algorithm"
,
type
=
str
,
default
=
'
SR
N'
)
parser
.
add_argument
(
"--rec_model_dir"
,
type
=
str
)
parser
.
add_argument
(
"--rec_model_dir"
,
type
=
str
)
parser
.
add_argument
(
"--rec_image_shape"
,
type
=
str
,
default
=
"3,
32, 320
"
)
parser
.
add_argument
(
"--rec_image_shape"
,
type
=
str
,
default
=
"3,
64, 256
"
)
parser
.
add_argument
(
"--rec_char_type"
,
type
=
str
,
default
=
'
ch
'
)
parser
.
add_argument
(
"--rec_char_type"
,
type
=
str
,
default
=
'
en
'
)
parser
.
add_argument
(
"--rec_batch_num"
,
type
=
int
,
default
=
30
)
parser
.
add_argument
(
"--rec_batch_num"
,
type
=
int
,
default
=
30
)
parser
.
add_argument
(
"--max_text_length"
,
type
=
int
,
default
=
25
)
parser
.
add_argument
(
"--max_text_length"
,
type
=
int
,
default
=
25
)
parser
.
add_argument
(
parser
.
add_argument
(
...
@@ -107,10 +107,13 @@ def create_predictor(args, mode):
...
@@ -107,10 +107,13 @@ def create_predictor(args, mode):
# use zero copy
# use zero copy
config
.
delete_pass
(
"conv_transpose_eltwiseadd_bn_fuse_pass"
)
config
.
delete_pass
(
"conv_transpose_eltwiseadd_bn_fuse_pass"
)
config
.
switch_use_feed_fetch_ops
(
False
)
#config.switch_use_feed_fetch_ops(False)
config
.
switch_use_feed_fetch_ops
(
True
)
predictor
=
create_paddle_predictor
(
config
)
predictor
=
create_paddle_predictor
(
config
)
input_names
=
predictor
.
get_input_names
()
input_names
=
predictor
.
get_input_names
()
input_tensor
=
predictor
.
get_input_tensor
(
input_names
[
0
])
print
(
input_names
)
for
name
in
input_names
:
input_tensor
=
predictor
.
get_input_tensor
(
name
)
output_names
=
predictor
.
get_output_names
()
output_names
=
predictor
.
get_output_names
()
output_tensors
=
[]
output_tensors
=
[]
for
output_name
in
output_names
:
for
output_name
in
output_names
:
...
...
tools/infer_rec.py
浏览文件 @
bc1ad207
...
@@ -145,7 +145,7 @@ def main():
...
@@ -145,7 +145,7 @@ def main():
preds
=
preds
.
reshape
(
-
1
)
preds
=
preds
.
reshape
(
-
1
)
probs
=
np
.
array
(
predict
[
1
])
probs
=
np
.
array
(
predict
[
1
])
ind
=
np
.
argmax
(
probs
,
axis
=
1
)
ind
=
np
.
argmax
(
probs
,
axis
=
1
)
valid_ind
=
np
.
where
(
preds
!=
int
(
char_num
-
1
))[
0
]
valid_ind
=
np
.
where
(
preds
!=
int
(
char_num
-
1
))[
0
]
if
len
(
valid_ind
)
==
0
:
if
len
(
valid_ind
)
==
0
:
continue
continue
score
=
np
.
mean
(
probs
[
valid_ind
,
ind
[
valid_ind
]])
score
=
np
.
mean
(
probs
[
valid_ind
,
ind
[
valid_ind
]])
...
@@ -162,7 +162,10 @@ def main():
...
@@ -162,7 +162,10 @@ def main():
fluid
.
io
.
save_inference_model
(
fluid
.
io
.
save_inference_model
(
"./output/"
,
"./output/"
,
feeded_var_names
=
[
'image'
],
feeded_var_names
=
[
'image'
,
'encoder_word_pos'
,
'gsrm_slf_attn_bias1'
,
'gsrm_slf_attn_bias2'
,
'gsrm_word_pos'
],
target_vars
=
target_var
,
target_vars
=
target_var
,
executor
=
exe
,
executor
=
exe
,
main_program
=
eval_prog
,
main_program
=
eval_prog
,
...
...
tools/program.py
浏览文件 @
bc1ad207
...
@@ -208,10 +208,19 @@ def build_export(config, main_prog, startup_prog):
...
@@ -208,10 +208,19 @@ def build_export(config, main_prog, startup_prog):
with
fluid
.
unique_name
.
guard
():
with
fluid
.
unique_name
.
guard
():
func_infor
=
config
[
'Architecture'
][
'function'
]
func_infor
=
config
[
'Architecture'
][
'function'
]
model
=
create_module
(
func_infor
)(
params
=
config
)
model
=
create_module
(
func_infor
)(
params
=
config
)
image
,
outputs
=
model
(
mode
=
'export'
)
loss_type
=
config
[
'Global'
][
'loss_type'
]
if
loss_type
==
"srn"
:
image
,
others
,
outputs
=
model
(
mode
=
'export'
)
else
:
image
,
outputs
=
model
(
mode
=
'export'
)
fetches_var_name
=
sorted
([
name
for
name
in
outputs
.
keys
()])
fetches_var_name
=
sorted
([
name
for
name
in
outputs
.
keys
()])
fetches_var
=
[
outputs
[
name
]
for
name
in
fetches_var_name
]
fetches_var
=
[
outputs
[
name
]
for
name
in
fetches_var_name
]
feeded_var_names
=
[
image
.
name
]
if
loss_type
==
"srn"
:
others_var_names
=
sorted
([
name
for
name
in
others
.
keys
()])
feeded_var_names
=
[
image
.
name
]
+
others_var_names
else
:
feeded_var_names
=
[
image
.
name
]
target_vars
=
fetches_var
target_vars
=
fetches_var
return
feeded_var_names
,
target_vars
,
fetches_var_name
return
feeded_var_names
,
target_vars
,
fetches_var_name
...
@@ -409,7 +418,9 @@ def preprocess():
...
@@ -409,7 +418,9 @@ def preprocess():
check_gpu
(
use_gpu
)
check_gpu
(
use_gpu
)
alg
=
config
[
'Global'
][
'algorithm'
]
alg
=
config
[
'Global'
][
'algorithm'
]
assert
alg
in
[
'EAST'
,
'DB'
,
'SAST'
,
'Rosetta'
,
'CRNN'
,
'STARNet'
,
'RARE'
,
'SRN'
]
assert
alg
in
[
'EAST'
,
'DB'
,
'SAST'
,
'Rosetta'
,
'CRNN'
,
'STARNet'
,
'RARE'
,
'SRN'
]
if
alg
in
[
'Rosetta'
,
'CRNN'
,
'STARNet'
,
'RARE'
,
'SRN'
]:
if
alg
in
[
'Rosetta'
,
'CRNN'
,
'STARNet'
,
'RARE'
,
'SRN'
]:
config
[
'Global'
][
'char_ops'
]
=
CharacterOps
(
config
[
'Global'
])
config
[
'Global'
][
'char_ops'
]
=
CharacterOps
(
config
[
'Global'
])
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录