提交 b4b2107c 编写于 作者: qq_25193841's avatar qq_25193841

Synchronize docs

上级 1e0d2230
...@@ -273,7 +273,7 @@ python3 tools/export_model.py -c configs/rec/rec_r34_vd_none_bilstm_ctc.yml -o G ...@@ -273,7 +273,7 @@ python3 tools/export_model.py -c configs/rec/rec_r34_vd_none_bilstm_ctc.yml -o G
CRNN 文本识别模型推理,可以执行如下命令: CRNN 文本识别模型推理,可以执行如下命令:
``` ```
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" --rec_model_dir="./inference/rec_crnn/" --rec_image_shape="3, 32, 100" --rec_char_type="en" python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" --rec_model_dir="./inference/rec_crnn/" --rec_image_shape="3, 32, 100" --rec_char_dict_path="./ppocr/utils/ic15_dict.txt"
``` ```
![](../imgs_words_en/word_336.png) ![](../imgs_words_en/word_336.png)
...@@ -288,7 +288,7 @@ Predicts of ./doc/imgs_words_en/word_336.png:('super', 0.9999073) ...@@ -288,7 +288,7 @@ Predicts of ./doc/imgs_words_en/word_336.png:('super', 0.9999073)
- 训练时采用的图像分辨率不同,训练上述模型采用的图像分辨率是[3,32,100],而中文模型训练时,为了保证长文本的识别效果,训练时采用的图像分辨率是[3, 32, 320]。预测推理程序默认的的形状参数是训练中文采用的图像分辨率,即[3, 32, 320]。因此,这里推理上述英文模型时,需要通过参数rec_image_shape设置识别图像的形状。 - 训练时采用的图像分辨率不同,训练上述模型采用的图像分辨率是[3,32,100],而中文模型训练时,为了保证长文本的识别效果,训练时采用的图像分辨率是[3, 32, 320]。预测推理程序默认的的形状参数是训练中文采用的图像分辨率,即[3, 32, 320]。因此,这里推理上述英文模型时,需要通过参数rec_image_shape设置识别图像的形状。
- 字符列表,DTRB论文中实验只是针对26个小写英文本母和10个数字进行实验,总共36个字符。所有大小字符都转成了小写字符,不在上面列表的字符都忽略,认为是空格。因此这里没有输入字符字典,而是通过如下命令生成字典.因此在推理时需要设置参数rec_char_type,指定为英文"en"。 - 字符列表,DTRB论文中实验只是针对26个小写英文本母和10个数字进行实验,总共36个字符。所有大小字符都转成了小写字符,不在上面列表的字符都忽略,认为是空格。因此这里没有输入字符字典,而是通过如下命令生成字典。因此在推理时需要设置参数rec_char_dict_path,指定为英文字典"./ppocr/utils/ic15_dict.txt指定为英文"en"。
``` ```
self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz" self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz"
...@@ -303,15 +303,15 @@ dict_character = list(self.character_str) ...@@ -303,15 +303,15 @@ dict_character = list(self.character_str)
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" \ python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" \
--rec_model_dir="./inference/srn/" \ --rec_model_dir="./inference/srn/" \
--rec_image_shape="1, 64, 256" \ --rec_image_shape="1, 64, 256" \
--rec_char_type="en" \ --rec_char_dict_path="./ppocr/utils/ic15_dict.txt" \
--rec_algorithm="SRN" --rec_algorithm="SRN"
``` ```
### 4. 自定义文本识别字典的推理 ### 4. 自定义文本识别字典的推理
如果训练时修改了文本的字典,在使用inference模型预测时,需要通过`--rec_char_dict_path`指定使用的字典路径,并且设置 `rec_char_type=ch` 如果训练时修改了文本的字典,在使用inference模型预测时,需要通过`--rec_char_dict_path`指定使用的字典路径
``` ```
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" --rec_model_dir="./your inference model" --rec_image_shape="3, 32, 100" --rec_char_type="ch" --rec_char_dict_path="your text dict path" python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" --rec_model_dir="./your inference model" --rec_image_shape="3, 32, 100" --rec_char_dict_path="your text dict path"
``` ```
<a name="多语言模型的推理"></a> <a name="多语言模型的推理"></a>
...@@ -320,7 +320,7 @@ python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png ...@@ -320,7 +320,7 @@ python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png
需要通过 `--vis_font_path` 指定可视化的字体路径,`doc/fonts/` 路径下有默认提供的小语种字体,例如韩文识别: 需要通过 `--vis_font_path` 指定可视化的字体路径,`doc/fonts/` 路径下有默认提供的小语种字体,例如韩文识别:
``` ```
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/korean/1.jpg" --rec_model_dir="./your inference model" --rec_char_type="korean" --rec_char_dict_path="ppocr/utils/dict/korean_dict.txt" --vis_font_path="doc/fonts/korean.ttf" python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/korean/1.jpg" --rec_model_dir="./your inference model" --rec_char_dict_path="ppocr/utils/dict/korean_dict.txt" --vis_font_path="doc/fonts/korean.ttf"
``` ```
![](../imgs_words/korean/1.jpg) ![](../imgs_words/korean/1.jpg)
......
...@@ -33,7 +33,7 @@ ln -sf <path/to/dataset> <path/to/paddle_ocr>/train_data/dataset ...@@ -33,7 +33,7 @@ ln -sf <path/to/dataset> <path/to/paddle_ocr>/train_data/dataset
mklink /d <path/to/paddle_ocr>/train_data/dataset <path/to/dataset> mklink /d <path/to/paddle_ocr>/train_data/dataset <path/to/dataset>
``` ```
<a name="自定义数据集"></a> <a name="准备数据集"></a>
### 1.1 自定义数据集 ### 1.1 自定义数据集
下面以通用数据集为例, 介绍如何准备数据集: 下面以通用数据集为例, 介绍如何准备数据集:
...@@ -86,7 +86,10 @@ train_data/rec/train/word_002.jpg 用科技让复杂的世界更简单 ...@@ -86,7 +86,10 @@ train_data/rec/train/word_002.jpg 用科技让复杂的世界更简单
若您本地没有数据集,可以在官网下载 [ICDAR2015](http://rrc.cvc.uab.es/?ch=4&com=downloads) 数据,用于快速验证。也可以参考[DTRB](https://github.com/clovaai/deep-text-recognition-benchmark#download-lmdb-dataset-for-traininig-and-evaluation-from-here) ,下载 benchmark 所需的lmdb格式数据集。 若您本地没有数据集,可以在官网下载 [ICDAR2015](http://rrc.cvc.uab.es/?ch=4&com=downloads) 数据,用于快速验证。也可以参考[DTRB](https://github.com/clovaai/deep-text-recognition-benchmark#download-lmdb-dataset-for-traininig-and-evaluation-from-here) ,下载 benchmark 所需的lmdb格式数据集。
如果希望复现SAR的论文指标,需要下载[SynthAdd](https://pan.baidu.com/share/init?surl=uV0LtoNmcxbO-0YA7Ch4dg), 提取码:627x。此外,真实数据集icdar2013, icdar2015, cocotext, IIIT5也作为训练数据的一部分。具体数据细节可以参考论文SAR。
如果你使用的是icdar2015的公开数据集,PaddleOCR 提供了一份用于训练 ICDAR2015 数据集的标签文件,通过以下方式下载: 如果你使用的是icdar2015的公开数据集,PaddleOCR 提供了一份用于训练 ICDAR2015 数据集的标签文件,通过以下方式下载:
``` ```
# 训练集标签 # 训练集标签
wget -P ./train_data/ic15_data https://paddleocr.bj.bcebos.com/dataset/rec_gt_train.txt wget -P ./train_data/ic15_data https://paddleocr.bj.bcebos.com/dataset/rec_gt_train.txt
...@@ -156,7 +159,6 @@ PaddleOCR内置了一部分字典,可以按需使用。 ...@@ -156,7 +159,6 @@ PaddleOCR内置了一部分字典,可以按需使用。
- 自定义字典 - 自定义字典
如需自定义dic文件,请在 `configs/rec/rec_icdar15_train.yml` 中添加 `character_dict_path` 字段, 指向您的字典路径。 如需自定义dic文件,请在 `configs/rec/rec_icdar15_train.yml` 中添加 `character_dict_path` 字段, 指向您的字典路径。
并将 `character_type` 设置为 `ch`
<a name="支持空格"></a> <a name="支持空格"></a>
### 1.4 添加空格类别 ### 1.4 添加空格类别
...@@ -230,6 +232,10 @@ PaddleOCR支持训练和评估交替进行, 可以在 `configs/rec/rec_icdar15_t ...@@ -230,6 +232,10 @@ PaddleOCR支持训练和评估交替进行, 可以在 `configs/rec/rec_icdar15_t
| rec_r34_vd_tps_bilstm_att.yml | CRNN | Resnet34_vd | TPS | BiLSTM | att | | rec_r34_vd_tps_bilstm_att.yml | CRNN | Resnet34_vd | TPS | BiLSTM | att |
| rec_r50fpn_vd_none_srn.yml | SRN | Resnet50_fpn_vd | None | rnn | srn | | rec_r50fpn_vd_none_srn.yml | SRN | Resnet50_fpn_vd | None | rnn | srn |
| rec_mtb_nrtr.yml | NRTR | nrtr_mtb | None | transformer encoder | transformer decoder | | rec_mtb_nrtr.yml | NRTR | nrtr_mtb | None | transformer encoder | transformer decoder |
| rec_r31_sar.yml | SAR | ResNet31 | None | LSTM encoder | LSTM decoder |
| rec_resnet_stn_bilstm_att.yml | SEED | Aster_Resnet | STN | BiLSTM | att |
*其中SEED模型需要额外加载FastText训练好的[语言模型](https://dl.fbaipublicfiles.com/fasttext/vectors-crawl/cc.en.300.bin.gz)
训练中文数据,推荐使用[rec_chinese_lite_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml),如您希望尝试其他算法在中文数据集上的效果,请参考下列说明修改配置文件: 训练中文数据,推荐使用[rec_chinese_lite_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml),如您希望尝试其他算法在中文数据集上的效果,请参考下列说明修改配置文件:
...@@ -239,8 +245,6 @@ Global: ...@@ -239,8 +245,6 @@ Global:
... ...
# 添加自定义字典,如修改字典请将路径指向新字典 # 添加自定义字典,如修改字典请将路径指向新字典
character_dict_path: ppocr/utils/ppocr_keys_v1.txt character_dict_path: ppocr/utils/ppocr_keys_v1.txt
# 修改字符类型
character_type: ch
... ...
# 识别空格 # 识别空格
use_space_char: True use_space_char: True
...@@ -304,18 +308,18 @@ PaddleOCR目前已支持80种(除中文外)语种识别,`configs/rec/multi ...@@ -304,18 +308,18 @@ PaddleOCR目前已支持80种(除中文外)语种识别,`configs/rec/multi
按语系划分,目前PaddleOCR支持的语种有: 按语系划分,目前PaddleOCR支持的语种有:
| 配置文件 | 算法名称 | backbone | trans | seq | pred | language | character_type | | 配置文件 | 算法名称 | backbone | trans | seq | pred | language |
| :--------: | :-------: | :-------: | :-------: | :-----: | :-----: | :-----: | :-----: | | :--------: | :-------: | :-------: | :-------: | :-----: | :-----: | :-----: |
| rec_chinese_cht_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 中文繁体 | chinese_cht| | rec_chinese_cht_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 中文繁体 |
| rec_en_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 英语(区分大小写) | EN | | rec_en_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 英语(区分大小写) |
| rec_french_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 法语 | french | | rec_french_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 法语 |
| rec_ger_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 德语 | german | | rec_ger_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 德语 |
| rec_japan_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 日语 | japan | | rec_japan_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 日语 |
| rec_korean_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 韩语 | korean | | rec_korean_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 韩语 |
| rec_latin_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 拉丁字母 | latin | | rec_latin_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 拉丁字母 |
| rec_arabic_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 阿拉伯字母 | ar | | rec_arabic_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 阿拉伯字母 |
| rec_cyrillic_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 斯拉夫字母 | cyrillic | | rec_cyrillic_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 斯拉夫字母 |
| rec_devanagari_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 梵文字母 | devanagari | | rec_devanagari_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 梵文字母 |
更多支持语种请参考: [多语言模型](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.1/doc/doc_ch/multi_languages.md#%E8%AF%AD%E7%A7%8D%E7%BC%A9%E5%86%99) 更多支持语种请参考: [多语言模型](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.1/doc/doc_ch/multi_languages.md#%E8%AF%AD%E7%A7%8D%E7%BC%A9%E5%86%99)
...@@ -456,5 +460,3 @@ python3 tools/export_model.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_trai ...@@ -456,5 +460,3 @@ python3 tools/export_model.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_trai
``` ```
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" --rec_model_dir="./your inference model" --rec_image_shape="3, 32, 100" --rec_char_type="ch" --rec_char_dict_path="your text dict path" python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" --rec_model_dir="./your inference model" --rec_image_shape="3, 32, 100" --rec_char_type="ch" --rec_char_dict_path="your text dict path"
``` ```
...@@ -137,3 +137,14 @@ PaddleOCR主要聚焦通用OCR,如果有垂类需求,您可以用PaddleOCR+ ...@@ -137,3 +137,14 @@ PaddleOCR主要聚焦通用OCR,如果有垂类需求,您可以用PaddleOCR+
A:识别模型训练初期acc为0是正常的,多训一段时间指标就上来了。 A:识别模型训练初期acc为0是正常的,多训一段时间指标就上来了。
***
具体的训练教程可点击下方链接跳转:
\- [文本检测模型训练](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.3/doc/doc_ch/detection.md)
\- [文本识别模型训练](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.3/doc/doc_ch/recognition.md)
\- [文本方向分类器训练](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.3/doc/doc_ch/angle_class.md)
...@@ -21,7 +21,7 @@ Next, we first introduce how to convert a trained model into an inference model, ...@@ -21,7 +21,7 @@ Next, we first introduce how to convert a trained model into an inference model,
- [2.2 DB Text Detection Model Inference](#DB_DETECTION) - [2.2 DB Text Detection Model Inference](#DB_DETECTION)
- [2.3 East Text Detection Model Inference](#EAST_DETECTION) - [2.3 East Text Detection Model Inference](#EAST_DETECTION)
- [2.4 Sast Text Detection Model Inference](#SAST_DETECTION) - [2.4 Sast Text Detection Model Inference](#SAST_DETECTION)
- [3. Text Recognition Model Inference](#RECOGNITION_MODEL_INFERENCE) - [3. Text Recognition Model Inference](#RECOGNITION_MODEL_INFERENCE)
- [3.1 Lightweight Chinese Text Recognition Model Reference](#LIGHTWEIGHT_RECOGNITION) - [3.1 Lightweight Chinese Text Recognition Model Reference](#LIGHTWEIGHT_RECOGNITION)
- [3.2 CTC-Based Text Recognition Model Inference](#CTC-BASED_RECOGNITION) - [3.2 CTC-Based Text Recognition Model Inference](#CTC-BASED_RECOGNITION)
...@@ -281,7 +281,7 @@ python3 tools/export_model.py -c configs/det/rec_r34_vd_none_bilstm_ctc.yml -o G ...@@ -281,7 +281,7 @@ python3 tools/export_model.py -c configs/det/rec_r34_vd_none_bilstm_ctc.yml -o G
For CRNN text recognition model inference, execute the following commands: For CRNN text recognition model inference, execute the following commands:
``` ```
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" --rec_model_dir="./inference/starnet/" --rec_image_shape="3, 32, 100" --rec_char_type="en" python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" --rec_model_dir="./inference/starnet/" --rec_image_shape="3, 32, 100" --rec_char_dict_path="./ppocr/utils/ic15_dict.txt"
``` ```
![](../imgs_words_en/word_336.png) ![](../imgs_words_en/word_336.png)
...@@ -314,7 +314,7 @@ with the training, such as: --rec_image_shape="1, 64, 256" ...@@ -314,7 +314,7 @@ with the training, such as: --rec_image_shape="1, 64, 256"
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" \ python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" \
--rec_model_dir="./inference/srn/" \ --rec_model_dir="./inference/srn/" \
--rec_image_shape="1, 64, 256" \ --rec_image_shape="1, 64, 256" \
--rec_char_type="en" \ --rec_char_dict_path="./ppocr/utils/ic15_dict.txt" \
--rec_algorithm="SRN" --rec_algorithm="SRN"
``` ```
...@@ -323,7 +323,7 @@ python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png ...@@ -323,7 +323,7 @@ python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png
If the text dictionary is modified during training, when using the inference model to predict, you need to specify the dictionary path used by `--rec_char_dict_path`, and set `rec_char_type=ch` If the text dictionary is modified during training, when using the inference model to predict, you need to specify the dictionary path used by `--rec_char_dict_path`, and set `rec_char_type=ch`
``` ```
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" --rec_model_dir="./your inference model" --rec_image_shape="3, 32, 100" --rec_char_type="ch" --rec_char_dict_path="your text dict path" python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" --rec_model_dir="./your inference model" --rec_image_shape="3, 32, 100" --rec_char_dict_path="your text dict path"
``` ```
<a name="MULTILINGUAL_MODEL_INFERENCE"></a> <a name="MULTILINGUAL_MODEL_INFERENCE"></a>
...@@ -333,7 +333,7 @@ If you need to predict other language models, when using inference model predict ...@@ -333,7 +333,7 @@ If you need to predict other language models, when using inference model predict
You need to specify the visual font path through `--vis_font_path`. There are small language fonts provided by default under the `doc/fonts` path, such as Korean recognition: You need to specify the visual font path through `--vis_font_path`. There are small language fonts provided by default under the `doc/fonts` path, such as Korean recognition:
``` ```
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/korean/1.jpg" --rec_model_dir="./your inference model" --rec_char_type="korean" --rec_char_dict_path="ppocr/utils/dict/korean_dict.txt" --vis_font_path="doc/fonts/korean.ttf" python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/korean/1.jpg" --rec_model_dir="./your inference model" --rec_char_dict_path="ppocr/utils/dict/korean_dict.txt" --vis_font_path="doc/fonts/korean.ttf"
``` ```
![](../imgs_words/korean/1.jpg) ![](../imgs_words/korean/1.jpg)
...@@ -399,7 +399,7 @@ If you want to try other detection algorithms or recognition algorithms, please ...@@ -399,7 +399,7 @@ If you want to try other detection algorithms or recognition algorithms, please
The following command uses the combination of the EAST text detection and STAR-Net text recognition: The following command uses the combination of the EAST text detection and STAR-Net text recognition:
``` ```
python3 tools/infer/predict_system.py --image_dir="./doc/imgs_en/img_10.jpg" --det_model_dir="./inference/det_east/" --det_algorithm="EAST" --rec_model_dir="./inference/starnet/" --rec_image_shape="3, 32, 100" --rec_char_type="en" python3 tools/infer/predict_system.py --image_dir="./doc/imgs_en/img_10.jpg" --det_model_dir="./inference/det_east/" --det_algorithm="EAST" --rec_model_dir="./inference/starnet/" --rec_image_shape="3, 32, 100" --rec_char_dict_path="./ppocr/utils/ic15_dict.txt"
``` ```
After executing the command, the recognition result image is as follows: After executing the command, the recognition result image is as follows:
......
...@@ -91,6 +91,8 @@ Similar to the training set, the test set also needs to be provided a folder con ...@@ -91,6 +91,8 @@ Similar to the training set, the test set also needs to be provided a folder con
If you do not have a dataset locally, you can download it on the official website [icdar2015](http://rrc.cvc.uab.es/?ch=4&com=downloads). If you do not have a dataset locally, you can download it on the official website [icdar2015](http://rrc.cvc.uab.es/?ch=4&com=downloads).
Also refer to [DTRB](https://github.com/clovaai/deep-text-recognition-benchmark#download-lmdb-dataset-for-traininig-and-evaluation-from-here) ,download the lmdb format dataset required for benchmark Also refer to [DTRB](https://github.com/clovaai/deep-text-recognition-benchmark#download-lmdb-dataset-for-traininig-and-evaluation-from-here) ,download the lmdb format dataset required for benchmark
If you want to reproduce the paper SAR, you need to download extra dataset [SynthAdd](https://pan.baidu.com/share/init?surl=uV0LtoNmcxbO-0YA7Ch4dg), extraction code: 627x. Besides, icdar2013, icdar2015, cocotext, IIIT5k datasets are also used to train. For specific details, please refer to the paper SAR.
PaddleOCR provides label files for training the icdar2015 dataset, which can be downloaded in the following ways: PaddleOCR provides label files for training the icdar2015 dataset, which can be downloaded in the following ways:
``` ```
...@@ -159,7 +161,7 @@ The current multi-language model is still in the demo stage and will continue to ...@@ -159,7 +161,7 @@ The current multi-language model is still in the demo stage and will continue to
If you like, you can submit the dictionary file to [dict](../../ppocr/utils/dict) and we will thank you in the Repo. If you like, you can submit the dictionary file to [dict](../../ppocr/utils/dict) and we will thank you in the Repo.
To customize the dict file, please modify the `character_dict_path` field in `configs/rec/rec_icdar15_train.yml` and set `character_type` to `ch`. To customize the dict file, please modify the `character_dict_path` field in `configs/rec/rec_icdar15_train.yml` .
- Custom dictionary - Custom dictionary
...@@ -170,8 +172,6 @@ If you need to customize dic file, please add character_dict_path field in confi ...@@ -170,8 +172,6 @@ If you need to customize dic file, please add character_dict_path field in confi
If you want to support the recognition of the `space` category, please set the `use_space_char` field in the yml file to `True`. If you want to support the recognition of the `space` category, please set the `use_space_char` field in the yml file to `True`.
**Note: use_space_char only takes effect when character_type=ch**
<a name="TRAINING"></a> <a name="TRAINING"></a>
## 2.Training ## 2.Training
...@@ -235,6 +235,8 @@ If the evaluation set is large, the test will be time-consuming. It is recommend ...@@ -235,6 +235,8 @@ If the evaluation set is large, the test will be time-consuming. It is recommend
| rec_r34_vd_tps_bilstm_att.yml | CRNN | Resnet34_vd | TPS | BiLSTM | att | | rec_r34_vd_tps_bilstm_att.yml | CRNN | Resnet34_vd | TPS | BiLSTM | att |
| rec_r50fpn_vd_none_srn.yml | SRN | Resnet50_fpn_vd | None | rnn | srn | | rec_r50fpn_vd_none_srn.yml | SRN | Resnet50_fpn_vd | None | rnn | srn |
| rec_mtb_nrtr.yml | NRTR | nrtr_mtb | None | transformer encoder | transformer decoder | | rec_mtb_nrtr.yml | NRTR | nrtr_mtb | None | transformer encoder | transformer decoder |
| rec_r31_sar.yml | SAR | ResNet31 | None | LSTM encoder | LSTM decoder |
For training Chinese data, it is recommended to use For training Chinese data, it is recommended to use
[rec_chinese_lite_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml). If you want to try the result of other algorithms on the Chinese data set, please refer to the following instructions to modify the configuration file: [rec_chinese_lite_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml). If you want to try the result of other algorithms on the Chinese data set, please refer to the following instructions to modify the configuration file:
...@@ -246,7 +248,6 @@ Global: ...@@ -246,7 +248,6 @@ Global:
# Add a custom dictionary, such as modify the dictionary, please point the path to the new dictionary # Add a custom dictionary, such as modify the dictionary, please point the path to the new dictionary
character_dict_path: ppocr/utils/ppocr_keys_v1.txt character_dict_path: ppocr/utils/ppocr_keys_v1.txt
# Modify character type # Modify character type
character_type: ch
... ...
# Whether to recognize spaces # Whether to recognize spaces
use_space_char: True use_space_char: True
...@@ -308,18 +309,18 @@ Eval: ...@@ -308,18 +309,18 @@ Eval:
Currently, the multi-language algorithms supported by PaddleOCR are: Currently, the multi-language algorithms supported by PaddleOCR are:
| Configuration file | Algorithm name | backbone | trans | seq | pred | language | character_type | | Configuration file | Algorithm name | backbone | trans | seq | pred | language |
| :--------: | :-------: | :-------: | :-------: | :-----: | :-----: | :-----: | :-----: | | :--------: | :-------: | :-------: | :-------: | :-----: | :-----: | :-----: |
| rec_chinese_cht_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | chinese traditional | chinese_cht| | rec_chinese_cht_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | chinese traditional |
| rec_en_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | English(Case sensitive) | EN | | rec_en_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | English(Case sensitive) |
| rec_french_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | French | french | | rec_french_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | French |
| rec_ger_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | German | german | | rec_ger_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | German |
| rec_japan_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | Japanese | japan | | rec_japan_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | Japanese |
| rec_korean_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | Korean | korean | | rec_korean_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | Korean |
| rec_latin_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | Latin | latin | | rec_latin_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | Latin |
| rec_arabic_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | arabic | ar | | rec_arabic_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | arabic |
| rec_cyrillic_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | cyrillic | cyrillic | | rec_cyrillic_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | cyrillic |
| rec_devanagari_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | devanagari | devanagari | | rec_devanagari_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | devanagari |
For more supported languages, please refer to : [Multi-language model](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.1/doc/doc_en/multi_languages_en.md#4-support-languages-and-abbreviations) For more supported languages, please refer to : [Multi-language model](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.1/doc/doc_en/multi_languages_en.md#4-support-languages-and-abbreviations)
...@@ -467,6 +468,3 @@ inference/det_db/ ...@@ -467,6 +468,3 @@ inference/det_db/
``` ```
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" --rec_model_dir="./your inference model" --rec_image_shape="3, 32, 100" --rec_char_type="ch" --rec_char_dict_path="your text dict path" python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" --rec_model_dir="./your inference model" --rec_image_shape="3, 32, 100" --rec_char_type="ch" --rec_char_dict_path="your text dict path"
``` ```
...@@ -146,3 +146,10 @@ There are several experiences for reference when constructing the data set: ...@@ -146,3 +146,10 @@ There are several experiences for reference when constructing the data set:
A: It is normal for the acc to be 0 at the beginning of the recognition model training, and the indicator will come up after a longer training period. A: It is normal for the acc to be 0 at the beginning of the recognition model training, and the indicator will come up after a longer training period.
***
Click the following links for detailed training tutorial:
- [text detection model training](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.3/doc/doc_ch/detection.md)
- [text recognition model training](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.3/doc/doc_ch/recognition.md)
- [text direction classification model training](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.3/doc/doc_ch/angle_class.md)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册