提交 a479ca67 编写于 作者: L LDOUBLEV

fix kljs loss

上级 c1eaa17a
...@@ -65,7 +65,7 @@ Loss: ...@@ -65,7 +65,7 @@ Loss:
- ["Student", "Teacher"] - ["Student", "Teacher"]
maps_name: "thrink_maps" maps_name: "thrink_maps"
weight: 1.0 weight: 1.0
act: "softmax" # act: None
model_name_pairs: ["Student", "Teacher"] model_name_pairs: ["Student", "Teacher"]
key: maps key: maps
- DistillationDBLoss: - DistillationDBLoss:
......
...@@ -60,7 +60,7 @@ Loss: ...@@ -60,7 +60,7 @@ Loss:
- ["Student", "Student2"] - ["Student", "Student2"]
maps_name: "thrink_maps" maps_name: "thrink_maps"
weight: 1.0 weight: 1.0
act: "softmax" # act: None
model_name_pairs: ["Student", "Student2"] model_name_pairs: ["Student", "Student2"]
key: maps key: maps
- DistillationDBLoss: - DistillationDBLoss:
......
...@@ -57,17 +57,27 @@ class CELoss(nn.Layer): ...@@ -57,17 +57,27 @@ class CELoss(nn.Layer):
class KLJSLoss(object): class KLJSLoss(object):
def __init__(self, mode='kl'): def __init__(self, mode='kl'):
assert mode in ['kl', 'js', 'KL', 'JS' assert mode in ['kl', 'js', 'KL', 'JS'
], "mode can only be one of ['kl', 'js', 'KL', 'JS']" ], "mode can only be one of ['kl', 'KL', 'js', 'JS']"
self.mode = mode self.mode = mode
def __call__(self, p1, p2, reduction="mean"): def __call__(self, p1, p2, reduction="mean"):
loss = paddle.multiply(p2, paddle.log((p2 + 1e-5) / (p1 + 1e-5) + 1e-5)) if self.mode.lower() == 'kl':
loss = paddle.multiply(p2,
if self.mode.lower() == "js": paddle.log((p2 + 1e-5) / (p1 + 1e-5) + 1e-5))
loss += paddle.multiply( loss += paddle.multiply(
p1, paddle.log((p1 + 1e-5) / (p2 + 1e-5) + 1e-5)) p1, paddle.log((p1 + 1e-5) / (p2 + 1e-5) + 1e-5))
loss *= 0.5 loss *= 0.5
elif self.mode.lower() == "js":
loss = paddle.multiply(
p2, paddle.log((2 * p2 + 1e-5) / (p1 + p2 + 1e-5) + 1e-5))
loss += paddle.multiply(
p1, paddle.log((2 * p1 + 1e-5) / (p1 + p2 + 1e-5) + 1e-5))
loss *= 0.5
else:
raise ValueError(
"The mode.lower() if KLJSLoss should be one of ['kl', 'js']")
if reduction == "mean": if reduction == "mean":
loss = paddle.mean(loss, axis=[1, 2]) loss = paddle.mean(loss, axis=[1, 2])
elif reduction == "none" or reduction is None: elif reduction == "none" or reduction is None:
...@@ -95,7 +105,7 @@ class DMLLoss(nn.Layer): ...@@ -95,7 +105,7 @@ class DMLLoss(nn.Layer):
self.act = None self.act = None
self.use_log = use_log self.use_log = use_log
self.jskl_loss = KLJSLoss(mode="js") self.jskl_loss = KLJSLoss(mode="kl")
def _kldiv(self, x, target): def _kldiv(self, x, target):
eps = 1.0e-10 eps = 1.0e-10
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册