提交 a0023a1b 编写于 作者: T tink2123

update c++ serving

上级 e8f54741
......@@ -193,6 +193,12 @@ python3 -m paddle_serving_client.convert --dirname ./ch_PP-OCRv2_rec_infer/ \
<a name="C++"></a>
## Paddle Serving C++ 部署]
C++ 部署
基于python的服务部署,显然具有二次开发便捷的优势,然而真正落地应用,往往需要追求更优的性能。PaddleServing 也提供了性能更优的C++部署版本。
C++ 服务部署在环境搭建和数据准备阶段与 python 相同,区别在于启动服务和客户端发送请求时不同。
1. 准备 Serving 环境
为了提高预测性能,C++ 服务同样提供了多模型串联服务。与python pipeline服务不同,多模型串联的过程中需要将模型前后处理代码写在服务端,因此需要在本地重新编译生成serving。具体可参考官方文档:[如何编译Serving](https://github.com/PaddlePaddle/Serving/blob/v0.8.3/doc/Compile_CN.md)
......@@ -218,6 +224,13 @@ python3 -m paddle_serving_client.convert --dirname ./ch_PP-OCRv2_rec_infer/ \
成功运行后,模型预测的结果会打印在cmd窗口中,结果示例为:
![](./imgs/results.png)
在浏览器中输入服务器 ip:端口号,可以看到当前服务的实时QPS。(端口号范围需要是8000-9000)
在200张真实图片上测试,把检测长边限制为960。T4 GPU 上 QPS 峰值可达到51左右,约为pipeline的 2.12 倍。
![](./imgs/c++_qps.png)
<a name="Windows用户"></a>
## Windows用户
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册