Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
weixin_41840029
PaddleOCR
提交
9b9b2d60
P
PaddleOCR
项目概览
weixin_41840029
/
PaddleOCR
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleOCR
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleOCR
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
9b9b2d60
编写于
11月 04, 2021
作者:
M
MissPenguin
提交者:
GitHub
11月 04, 2021
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #4538 from MissPenguin/dygraph
add batch infer for cpp rec
上级
68272833
ee840e71
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
166 addition
and
102 deletion
+166
-102
deploy/cpp_infer/include/ocr_rec.h
deploy/cpp_infer/include/ocr_rec.h
+7
-3
deploy/cpp_infer/include/preprocess_op.h
deploy/cpp_infer/include/preprocess_op.h
+5
-0
deploy/cpp_infer/include/utility.h
deploy/cpp_infer/include/utility.h
+3
-0
deploy/cpp_infer/src/main.cpp
deploy/cpp_infer/src/main.cpp
+26
-23
deploy/cpp_infer/src/ocr_rec.cpp
deploy/cpp_infer/src/ocr_rec.cpp
+98
-73
deploy/cpp_infer/src/preprocess_op.cpp
deploy/cpp_infer/src/preprocess_op.cpp
+14
-2
deploy/cpp_infer/src/utility.cpp
deploy/cpp_infer/src/utility.cpp
+13
-0
tools/infer/predict_rec.py
tools/infer/predict_rec.py
+0
-1
未找到文件。
deploy/cpp_infer/include/ocr_rec.h
浏览文件 @
9b9b2d60
...
...
@@ -44,7 +44,8 @@ public:
const
int
&
gpu_id
,
const
int
&
gpu_mem
,
const
int
&
cpu_math_library_num_threads
,
const
bool
&
use_mkldnn
,
const
string
&
label_path
,
const
bool
&
use_tensorrt
,
const
std
::
string
&
precision
)
{
const
bool
&
use_tensorrt
,
const
std
::
string
&
precision
,
const
int
&
rec_batch_num
)
{
this
->
use_gpu_
=
use_gpu
;
this
->
gpu_id_
=
gpu_id
;
this
->
gpu_mem_
=
gpu_mem
;
...
...
@@ -52,6 +53,7 @@ public:
this
->
use_mkldnn_
=
use_mkldnn
;
this
->
use_tensorrt_
=
use_tensorrt
;
this
->
precision_
=
precision
;
this
->
rec_batch_num_
=
rec_batch_num
;
this
->
label_list_
=
Utility
::
ReadDict
(
label_path
);
this
->
label_list_
.
insert
(
this
->
label_list_
.
begin
(),
...
...
@@ -64,7 +66,7 @@ public:
// Load Paddle inference model
void
LoadModel
(
const
std
::
string
&
model_dir
);
void
Run
(
cv
::
Mat
&
img
,
std
::
vector
<
double
>
*
times
);
void
Run
(
std
::
vector
<
cv
::
Mat
>
img_list
,
std
::
vector
<
double
>
*
times
);
private:
std
::
shared_ptr
<
Predictor
>
predictor_
;
...
...
@@ -82,10 +84,12 @@ private:
bool
is_scale_
=
true
;
bool
use_tensorrt_
=
false
;
std
::
string
precision_
=
"fp32"
;
int
rec_batch_num_
=
6
;
// pre-process
CrnnResizeImg
resize_op_
;
Normalize
normalize_op_
;
Permute
permute_op_
;
Permute
Batch
permute_op_
;
// post-process
PostProcessor
post_processor_
;
...
...
deploy/cpp_infer/include/preprocess_op.h
浏览文件 @
9b9b2d60
...
...
@@ -44,6 +44,11 @@ public:
virtual
void
Run
(
const
cv
::
Mat
*
im
,
float
*
data
);
};
class
PermuteBatch
{
public:
virtual
void
Run
(
const
std
::
vector
<
cv
::
Mat
>
imgs
,
float
*
data
);
};
class
ResizeImgType0
{
public:
virtual
void
Run
(
const
cv
::
Mat
&
img
,
cv
::
Mat
&
resize_img
,
int
max_size_len
,
...
...
deploy/cpp_infer/include/utility.h
浏览文件 @
9b9b2d60
...
...
@@ -50,6 +50,9 @@ public:
static
cv
::
Mat
GetRotateCropImage
(
const
cv
::
Mat
&
srcimage
,
std
::
vector
<
std
::
vector
<
int
>>
box
);
static
std
::
vector
<
int
>
argsort
(
const
std
::
vector
<
float
>&
array
);
};
}
// namespace PaddleOCR
\ No newline at end of file
deploy/cpp_infer/src/main.cpp
浏览文件 @
9b9b2d60
...
...
@@ -61,7 +61,7 @@ DEFINE_string(cls_model_dir, "", "Path of cls inference model.");
DEFINE_double
(
cls_thresh
,
0.9
,
"Threshold of cls_thresh."
);
// recognition related
DEFINE_string
(
rec_model_dir
,
""
,
"Path of rec inference model."
);
DEFINE_int32
(
rec_batch_num
,
1
,
"rec_batch_num."
);
DEFINE_int32
(
rec_batch_num
,
6
,
"rec_batch_num."
);
DEFINE_string
(
char_list_file
,
"../../ppocr/utils/ppocr_keys_v1.txt"
,
"Path of dictionary."
);
...
...
@@ -146,8 +146,9 @@ int main_rec(std::vector<cv::String> cv_all_img_names) {
CRNNRecognizer
rec
(
FLAGS_rec_model_dir
,
FLAGS_use_gpu
,
FLAGS_gpu_id
,
FLAGS_gpu_mem
,
FLAGS_cpu_threads
,
FLAGS_enable_mkldnn
,
char_list_file
,
FLAGS_use_tensorrt
,
FLAGS_precision
);
FLAGS_use_tensorrt
,
FLAGS_precision
,
FLAGS_rec_batch_num
);
std
::
vector
<
cv
::
Mat
>
img_list
;
for
(
int
i
=
0
;
i
<
cv_all_img_names
.
size
();
++
i
)
{
LOG
(
INFO
)
<<
"The predict img: "
<<
cv_all_img_names
[
i
];
...
...
@@ -156,22 +157,21 @@ int main_rec(std::vector<cv::String> cv_all_img_names) {
std
::
cerr
<<
"[ERROR] image read failed! image path: "
<<
cv_all_img_names
[
i
]
<<
endl
;
exit
(
1
);
}
std
::
vector
<
double
>
rec_times
;
rec
.
Run
(
srcimg
,
&
rec_times
);
time_info
[
0
]
+=
rec_times
[
0
];
time_info
[
1
]
+=
rec_times
[
1
];
time_info
[
2
]
+=
rec_times
[
2
];
img_list
.
push_back
(
srcimg
);
}
std
::
vector
<
double
>
rec_times
;
rec
.
Run
(
img_list
,
&
rec_times
);
time_info
[
0
]
+=
rec_times
[
0
];
time_info
[
1
]
+=
rec_times
[
1
];
time_info
[
2
]
+=
rec_times
[
2
];
if
(
FLAGS_benchmark
)
{
AutoLogger
autolog
(
"ocr_rec"
,
FLAGS_use_gpu
,
FLAGS_use_tensorrt
,
FLAGS_enable_mkldnn
,
FLAGS_cpu_threads
,
1
,
FLAGS_rec_batch_num
,
"dynamic"
,
FLAGS_precision
,
time_info
,
...
...
@@ -209,7 +209,7 @@ int main_system(std::vector<cv::String> cv_all_img_names) {
CRNNRecognizer
rec
(
FLAGS_rec_model_dir
,
FLAGS_use_gpu
,
FLAGS_gpu_id
,
FLAGS_gpu_mem
,
FLAGS_cpu_threads
,
FLAGS_enable_mkldnn
,
char_list_file
,
FLAGS_use_tensorrt
,
FLAGS_precision
);
FLAGS_use_tensorrt
,
FLAGS_precision
,
FLAGS_rec_batch_num
);
for
(
int
i
=
0
;
i
<
cv_all_img_names
.
size
();
++
i
)
{
LOG
(
INFO
)
<<
"The predict img: "
<<
cv_all_img_names
[
i
];
...
...
@@ -228,19 +228,22 @@ int main_system(std::vector<cv::String> cv_all_img_names) {
time_info_det
[
1
]
+=
det_times
[
1
];
time_info_det
[
2
]
+=
det_times
[
2
];
cv
::
Mat
crop_img
;
std
::
vector
<
cv
::
Mat
>
img_list
;
for
(
int
j
=
0
;
j
<
boxes
.
size
();
j
++
)
{
crop_img
=
Utility
::
GetRotateCropImage
(
srcimg
,
boxes
[
j
]);
if
(
cls
!=
nullptr
)
{
crop_img
=
cls
->
Run
(
crop_img
);
}
rec
.
Run
(
crop_img
,
&
rec_times
);
time_info_rec
[
0
]
+=
rec_times
[
0
];
time_info_rec
[
1
]
+=
rec_times
[
1
];
time_info_rec
[
2
]
+=
rec_times
[
2
];
cv
::
Mat
crop_img
;
crop_img
=
Utility
::
GetRotateCropImage
(
srcimg
,
boxes
[
j
]);
if
(
cls
!=
nullptr
)
{
crop_img
=
cls
->
Run
(
crop_img
);
}
img_list
.
push_back
(
crop_img
);
}
rec
.
Run
(
img_list
,
&
rec_times
);
time_info_rec
[
0
]
+=
rec_times
[
0
];
time_info_rec
[
1
]
+=
rec_times
[
1
];
time_info_rec
[
2
]
+=
rec_times
[
2
];
}
if
(
FLAGS_benchmark
)
{
AutoLogger
autolog_det
(
"ocr_det"
,
FLAGS_use_gpu
,
...
...
@@ -257,7 +260,7 @@ int main_system(std::vector<cv::String> cv_all_img_names) {
FLAGS_use_tensorrt
,
FLAGS_enable_mkldnn
,
FLAGS_cpu_threads
,
1
,
FLAGS_rec_batch_num
,
"dynamic"
,
FLAGS_precision
,
time_info_rec
,
...
...
deploy/cpp_infer/src/ocr_rec.cpp
浏览文件 @
9b9b2d60
...
...
@@ -15,83 +15,108 @@
#include <include/ocr_rec.h>
namespace
PaddleOCR
{
void
CRNNRecognizer
::
Run
(
cv
::
Mat
&
img
,
std
::
vector
<
double
>
*
times
)
{
cv
::
Mat
srcimg
;
img
.
copyTo
(
srcimg
);
cv
::
Mat
resize_img
;
float
wh_ratio
=
float
(
srcimg
.
cols
)
/
float
(
srcimg
.
rows
);
auto
preprocess_start
=
std
::
chrono
::
steady_clock
::
now
();
this
->
resize_op_
.
Run
(
srcimg
,
resize_img
,
wh_ratio
,
this
->
use_tensorrt_
);
this
->
normalize_op_
.
Run
(
&
resize_img
,
this
->
mean_
,
this
->
scale_
,
this
->
is_scale_
);
std
::
vector
<
float
>
input
(
1
*
3
*
resize_img
.
rows
*
resize_img
.
cols
,
0.0
f
);
this
->
permute_op_
.
Run
(
&
resize_img
,
input
.
data
());
auto
preprocess_end
=
std
::
chrono
::
steady_clock
::
now
();
// Inference.
auto
input_names
=
this
->
predictor_
->
GetInputNames
();
auto
input_t
=
this
->
predictor_
->
GetInputHandle
(
input_names
[
0
]);
input_t
->
Reshape
({
1
,
3
,
resize_img
.
rows
,
resize_img
.
cols
});
auto
inference_start
=
std
::
chrono
::
steady_clock
::
now
();
input_t
->
CopyFromCpu
(
input
.
data
());
this
->
predictor_
->
Run
();
std
::
vector
<
float
>
predict_batch
;
auto
output_names
=
this
->
predictor_
->
GetOutputNames
();
auto
output_t
=
this
->
predictor_
->
GetOutputHandle
(
output_names
[
0
]);
auto
predict_shape
=
output_t
->
shape
();
int
out_num
=
std
::
accumulate
(
predict_shape
.
begin
(),
predict_shape
.
end
(),
1
,
void
CRNNRecognizer
::
Run
(
std
::
vector
<
cv
::
Mat
>
img_list
,
std
::
vector
<
double
>
*
times
)
{
std
::
chrono
::
duration
<
float
>
preprocess_diff
=
std
::
chrono
::
steady_clock
::
now
()
-
std
::
chrono
::
steady_clock
::
now
();
std
::
chrono
::
duration
<
float
>
inference_diff
=
std
::
chrono
::
steady_clock
::
now
()
-
std
::
chrono
::
steady_clock
::
now
();
std
::
chrono
::
duration
<
float
>
postprocess_diff
=
std
::
chrono
::
steady_clock
::
now
()
-
std
::
chrono
::
steady_clock
::
now
();
int
img_num
=
img_list
.
size
();
std
::
vector
<
float
>
width_list
;
for
(
int
i
=
0
;
i
<
img_num
;
i
++
)
{
width_list
.
push_back
(
float
(
img_list
[
i
].
cols
)
/
img_list
[
i
].
rows
);
}
std
::
vector
<
int
>
indices
=
Utility
::
argsort
(
width_list
);
for
(
int
beg_img_no
=
0
;
beg_img_no
<
img_num
;
beg_img_no
+=
this
->
rec_batch_num_
)
{
auto
preprocess_start
=
std
::
chrono
::
steady_clock
::
now
();
int
end_img_no
=
min
(
img_num
,
beg_img_no
+
this
->
rec_batch_num_
);
float
max_wh_ratio
=
0
;
for
(
int
ino
=
beg_img_no
;
ino
<
end_img_no
;
ino
++
)
{
int
h
=
img_list
[
indices
[
ino
]].
rows
;
int
w
=
img_list
[
indices
[
ino
]].
cols
;
float
wh_ratio
=
w
*
1.0
/
h
;
max_wh_ratio
=
max
(
max_wh_ratio
,
wh_ratio
);
}
std
::
vector
<
cv
::
Mat
>
norm_img_batch
;
for
(
int
ino
=
beg_img_no
;
ino
<
end_img_no
;
ino
++
)
{
cv
::
Mat
srcimg
;
img_list
[
indices
[
ino
]].
copyTo
(
srcimg
);
cv
::
Mat
resize_img
;
this
->
resize_op_
.
Run
(
srcimg
,
resize_img
,
max_wh_ratio
,
this
->
use_tensorrt_
);
this
->
normalize_op_
.
Run
(
&
resize_img
,
this
->
mean_
,
this
->
scale_
,
this
->
is_scale_
);
norm_img_batch
.
push_back
(
resize_img
);
}
int
batch_width
=
int
(
ceilf
(
32
*
max_wh_ratio
))
-
1
;
std
::
vector
<
float
>
input
(
this
->
rec_batch_num_
*
3
*
32
*
batch_width
,
0.0
f
);
this
->
permute_op_
.
Run
(
norm_img_batch
,
input
.
data
());
auto
preprocess_end
=
std
::
chrono
::
steady_clock
::
now
();
preprocess_diff
+=
preprocess_end
-
preprocess_start
;
// Inference.
auto
input_names
=
this
->
predictor_
->
GetInputNames
();
auto
input_t
=
this
->
predictor_
->
GetInputHandle
(
input_names
[
0
]);
input_t
->
Reshape
({
this
->
rec_batch_num_
,
3
,
32
,
batch_width
});
auto
inference_start
=
std
::
chrono
::
steady_clock
::
now
();
input_t
->
CopyFromCpu
(
input
.
data
());
this
->
predictor_
->
Run
();
std
::
vector
<
float
>
predict_batch
;
auto
output_names
=
this
->
predictor_
->
GetOutputNames
();
auto
output_t
=
this
->
predictor_
->
GetOutputHandle
(
output_names
[
0
]);
auto
predict_shape
=
output_t
->
shape
();
int
out_num
=
std
::
accumulate
(
predict_shape
.
begin
(),
predict_shape
.
end
(),
1
,
std
::
multiplies
<
int
>
());
predict_batch
.
resize
(
out_num
);
output_t
->
CopyToCpu
(
predict_batch
.
data
());
auto
inference_end
=
std
::
chrono
::
steady_clock
::
now
();
// ctc decode
auto
postprocess_start
=
std
::
chrono
::
steady_clock
::
now
();
std
::
vector
<
std
::
string
>
str_res
;
int
argmax_idx
;
int
last_index
=
0
;
float
score
=
0.
f
;
int
count
=
0
;
float
max_value
=
0.0
f
;
for
(
int
n
=
0
;
n
<
predict_shape
[
1
];
n
++
)
{
argmax_idx
=
int
(
Utility
::
argmax
(
&
predict_batch
[
n
*
predict_shape
[
2
]],
&
predict_batch
[(
n
+
1
)
*
predict_shape
[
2
]]));
max_value
=
float
(
*
std
::
max_element
(
&
predict_batch
[
n
*
predict_shape
[
2
]],
&
predict_batch
[(
n
+
1
)
*
predict_shape
[
2
]]));
if
(
argmax_idx
>
0
&&
(
!
(
n
>
0
&&
argmax_idx
==
last_index
)))
{
score
+=
max_value
;
count
+=
1
;
str_res
.
push_back
(
label_list_
[
argmax_idx
]);
predict_batch
.
resize
(
out_num
);
output_t
->
CopyToCpu
(
predict_batch
.
data
());
auto
inference_end
=
std
::
chrono
::
steady_clock
::
now
();
inference_diff
+=
inference_end
-
inference_start
;
// ctc decode
auto
postprocess_start
=
std
::
chrono
::
steady_clock
::
now
();
for
(
int
m
=
0
;
m
<
predict_shape
[
0
];
m
++
)
{
std
::
vector
<
std
::
string
>
str_res
;
int
argmax_idx
;
int
last_index
=
0
;
float
score
=
0.
f
;
int
count
=
0
;
float
max_value
=
0.0
f
;
for
(
int
n
=
0
;
n
<
predict_shape
[
1
];
n
++
)
{
argmax_idx
=
int
(
Utility
::
argmax
(
&
predict_batch
[(
m
*
predict_shape
[
1
]
+
n
)
*
predict_shape
[
2
]],
&
predict_batch
[(
m
*
predict_shape
[
1
]
+
n
+
1
)
*
predict_shape
[
2
]]));
max_value
=
float
(
*
std
::
max_element
(
&
predict_batch
[(
m
*
predict_shape
[
1
]
+
n
)
*
predict_shape
[
2
]],
&
predict_batch
[(
m
*
predict_shape
[
1
]
+
n
+
1
)
*
predict_shape
[
2
]]));
if
(
argmax_idx
>
0
&&
(
!
(
n
>
0
&&
argmax_idx
==
last_index
)))
{
score
+=
max_value
;
count
+=
1
;
str_res
.
push_back
(
label_list_
[
argmax_idx
]);
}
last_index
=
argmax_idx
;
}
score
/=
count
;
if
(
isnan
(
score
))
continue
;
for
(
int
i
=
0
;
i
<
str_res
.
size
();
i
++
)
{
std
::
cout
<<
str_res
[
i
];
}
std
::
cout
<<
"
\t
score: "
<<
score
<<
std
::
endl
;
}
auto
postprocess_end
=
std
::
chrono
::
steady_clock
::
now
();
postprocess_diff
+=
postprocess_end
-
postprocess_start
;
}
last_index
=
argmax_idx
;
}
auto
postprocess_end
=
std
::
chrono
::
steady_clock
::
now
();
score
/=
count
;
for
(
int
i
=
0
;
i
<
str_res
.
size
();
i
++
)
{
std
::
cout
<<
str_res
[
i
];
}
std
::
cout
<<
"
\t
score: "
<<
score
<<
std
::
endl
;
std
::
chrono
::
duration
<
float
>
preprocess_diff
=
preprocess_end
-
preprocess_start
;
times
->
push_back
(
double
(
preprocess_diff
.
count
()
*
1000
));
std
::
chrono
::
duration
<
float
>
inference_diff
=
inference_end
-
inference_start
;
times
->
push_back
(
double
(
inference_diff
.
count
()
*
1000
));
std
::
chrono
::
duration
<
float
>
postprocess_diff
=
postprocess_end
-
postprocess_start
;
times
->
push_back
(
double
(
postprocess_diff
.
count
()
*
1000
));
times
->
push_back
(
double
(
preprocess_diff
.
count
()
*
1000
));
times
->
push_back
(
double
(
inference_diff
.
count
()
*
1000
));
times
->
push_back
(
double
(
postprocess_diff
.
count
()
*
1000
));
}
void
CRNNRecognizer
::
LoadModel
(
const
std
::
string
&
model_dir
)
{
// AnalysisConfig config;
paddle_infer
::
Config
config
;
...
...
deploy/cpp_infer/src/preprocess_op.cpp
浏览文件 @
9b9b2d60
...
...
@@ -40,6 +40,17 @@ void Permute::Run(const cv::Mat *im, float *data) {
}
}
void
PermuteBatch
::
Run
(
const
std
::
vector
<
cv
::
Mat
>
imgs
,
float
*
data
)
{
for
(
int
j
=
0
;
j
<
imgs
.
size
();
j
++
){
int
rh
=
imgs
[
j
].
rows
;
int
rw
=
imgs
[
j
].
cols
;
int
rc
=
imgs
[
j
].
channels
();
for
(
int
i
=
0
;
i
<
rc
;
++
i
)
{
cv
::
extractChannel
(
imgs
[
j
],
cv
::
Mat
(
rh
,
rw
,
CV_32FC1
,
data
+
(
j
*
rc
+
i
)
*
rh
*
rw
),
i
);
}
}
}
void
Normalize
::
Run
(
cv
::
Mat
*
im
,
const
std
::
vector
<
float
>
&
mean
,
const
std
::
vector
<
float
>
&
scale
,
const
bool
is_scale
)
{
double
e
=
1.0
;
...
...
@@ -90,16 +101,17 @@ void CrnnResizeImg::Run(const cv::Mat &img, cv::Mat &resize_img, float wh_ratio,
imgC
=
rec_image_shape
[
0
];
imgH
=
rec_image_shape
[
1
];
imgW
=
rec_image_shape
[
2
];
imgW
=
int
(
32
*
wh_ratio
);
float
ratio
=
float
(
img
.
cols
)
/
float
(
img
.
rows
);
int
resize_w
,
resize_h
;
if
(
ceilf
(
imgH
*
ratio
)
>
imgW
)
resize_w
=
imgW
;
else
resize_w
=
int
(
ceilf
(
imgH
*
ratio
));
cv
::
resize
(
img
,
resize_img
,
cv
::
Size
(
resize_w
,
imgH
),
0.
f
,
0.
f
,
cv
::
INTER_LINEAR
);
cv
::
copyMakeBorder
(
resize_img
,
resize_img
,
0
,
0
,
0
,
...
...
deploy/cpp_infer/src/utility.cpp
浏览文件 @
9b9b2d60
...
...
@@ -147,4 +147,17 @@ cv::Mat Utility::GetRotateCropImage(const cv::Mat &srcimage,
}
}
std
::
vector
<
int
>
Utility
::
argsort
(
const
std
::
vector
<
float
>&
array
)
{
const
int
array_len
(
array
.
size
());
std
::
vector
<
int
>
array_index
(
array_len
,
0
);
for
(
int
i
=
0
;
i
<
array_len
;
++
i
)
array_index
[
i
]
=
i
;
std
::
sort
(
array_index
.
begin
(),
array_index
.
end
(),
[
&
array
](
int
pos1
,
int
pos2
)
{
return
(
array
[
pos1
]
<
array
[
pos2
]);
});
return
array_index
;
}
}
// namespace PaddleOCR
\ No newline at end of file
tools/infer/predict_rec.py
浏览文件 @
9b9b2d60
...
...
@@ -106,7 +106,6 @@ class TextRecognizer(object):
return
norm_img
.
astype
(
np
.
float32
)
/
128.
-
1.
assert
imgC
==
img
.
shape
[
2
]
max_wh_ratio
=
max
(
max_wh_ratio
,
imgW
/
imgH
)
imgW
=
int
((
32
*
max_wh_ratio
))
h
,
w
=
img
.
shape
[:
2
]
ratio
=
w
/
float
(
h
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录