提交 91170e7a 编写于 作者: L LDOUBLEV

Merge branch 'dygraph' of https://github.com/PaddlePaddle/PaddleOCR into dyg_db

......@@ -42,6 +42,7 @@
| name | 优化器类名 | Adam | 目前支持`Momentum`,`Adam`,`RMSProp`, 见[ppocr/optimizer/optimizer.py](../../ppocr/optimizer/optimizer.py) |
| beta1 | 设置一阶矩估计的指数衰减率 | 0.9 | \ |
| beta2 | 设置二阶矩估计的指数衰减率 | 0.999 | \ |
| clip_norm | 所允许的二范数最大值 | | \ |
| **lr** | 设置学习率decay方式 | - | \ |
| name | 学习率decay类名 | Cosine | 目前支持`Linear`,`Cosine`,`Step`,`Piecewise`, 见[ppocr/optimizer/learning_rate.py](../../ppocr/optimizer/learning_rate.py) |
| learning_rate | 基础学习率 | 0.001 | \ |
......
......@@ -41,6 +41,7 @@ Take rec_chinese_lite_train_v2.0.yml as an example
| name | Optimizer class name | Adam | Currently supports`Momentum`,`Adam`,`RMSProp`, see [ppocr/optimizer/optimizer.py](../../ppocr/optimizer/optimizer.py) |
| beta1 | Set the exponential decay rate for the 1st moment estimates | 0.9 | \ |
| beta2 | Set the exponential decay rate for the 2nd moment estimates | 0.999 | \ |
| clip_norm | The maximum norm value | - | \ |
| **lr** | Set the learning rate decay method | - | \ |
| name | Learning rate decay class name | Cosine | Currently supports`Linear`,`Cosine`,`Step`,`Piecewise`, see[ppocr/optimizer/learning_rate.py](../../ppocr/optimizer/learning_rate.py) |
| learning_rate | Set the base learning rate | 0.001 | \ |
......
......@@ -35,12 +35,13 @@ from .text_image_aug import tia_perspective, tia_stretch, tia_distort
class RecAug(object):
def __init__(self, use_tia=True, **kwargsz):
def __init__(self, use_tia=True, aug_prob=0.4, **kwargs):
self.use_tia = use_tia
self.aug_prob = aug_prob
def __call__(self, data):
img = data['image']
img = warp(img, 10, self.use_tia)
img = warp(img, 10, self.use_tia, self.aug_prob)
data['image'] = img
return data
......@@ -329,7 +330,7 @@ def get_warpAffine(config):
return rz
def warp(img, ang, use_tia=True):
def warp(img, ang, use_tia=True, prob=0.4):
"""
warp
"""
......@@ -338,8 +339,6 @@ def warp(img, ang, use_tia=True):
config.make(w, h, ang)
new_img = img
prob = 0.4
if config.distort:
img_height, img_width = img.shape[0:2]
if random.random() <= prob and img_height >= 20 and img_width >= 20:
......
......@@ -16,8 +16,8 @@ from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import copy
import paddle
__all__ = ['build_optimizer']
......@@ -49,7 +49,13 @@ def build_optimizer(config, epochs, step_each_epoch, parameters):
# step3 build optimizer
optim_name = config.pop('name')
if 'clip_norm' in config:
clip_norm = config.pop('clip_norm')
grad_clip = paddle.nn.ClipGradByNorm(clip_norm=clip_norm)
else:
grad_clip = None
optim = getattr(optimizer, optim_name)(learning_rate=lr,
weight_decay=reg,
grad_clip=grad_clip,
**config)
return optim(parameters), lr
......@@ -30,18 +30,25 @@ class Momentum(object):
regularization (WeightDecayRegularizer, optional) - The strategy of regularization.
"""
def __init__(self, learning_rate, momentum, weight_decay=None, **args):
def __init__(self,
learning_rate,
momentum,
weight_decay=None,
grad_clip=None,
**args):
super(Momentum, self).__init__()
self.learning_rate = learning_rate
self.momentum = momentum
self.weight_decay = weight_decay
self.grad_clip = grad_clip
def __call__(self, parameters):
opt = optim.Momentum(
learning_rate=self.learning_rate,
momentum=self.momentum,
parameters=parameters,
weight_decay=self.weight_decay)
weight_decay=self.weight_decay,
grad_clip=self.grad_clip,
parameters=parameters)
return opt
......@@ -96,10 +103,11 @@ class RMSProp(object):
def __init__(self,
learning_rate,
momentum,
momentum=0.0,
rho=0.95,
epsilon=1e-6,
weight_decay=None,
grad_clip=None,
**args):
super(RMSProp, self).__init__()
self.learning_rate = learning_rate
......@@ -107,6 +115,7 @@ class RMSProp(object):
self.rho = rho
self.epsilon = epsilon
self.weight_decay = weight_decay
self.grad_clip = grad_clip
def __call__(self, parameters):
opt = optim.RMSProp(
......@@ -115,5 +124,6 @@ class RMSProp(object):
rho=self.rho,
epsilon=self.epsilon,
weight_decay=self.weight_decay,
grad_clip=self.grad_clip,
parameters=parameters)
return opt
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册