未验证 提交 6e0a3fd6 编写于 作者: D Double_V 提交者: GitHub

Merge pull request #6766 from LDOUBLEV/dyg_pts

fix kl js loss
...@@ -65,7 +65,7 @@ Loss: ...@@ -65,7 +65,7 @@ Loss:
- ["Student", "Teacher"] - ["Student", "Teacher"]
maps_name: "thrink_maps" maps_name: "thrink_maps"
weight: 1.0 weight: 1.0
act: "softmax" # act: None
model_name_pairs: ["Student", "Teacher"] model_name_pairs: ["Student", "Teacher"]
key: maps key: maps
- DistillationDBLoss: - DistillationDBLoss:
......
...@@ -60,7 +60,7 @@ Loss: ...@@ -60,7 +60,7 @@ Loss:
- ["Student", "Student2"] - ["Student", "Student2"]
maps_name: "thrink_maps" maps_name: "thrink_maps"
weight: 1.0 weight: 1.0
act: "softmax" # act: None
model_name_pairs: ["Student", "Student2"] model_name_pairs: ["Student", "Student2"]
key: maps key: maps
- DistillationDBLoss: - DistillationDBLoss:
......
...@@ -34,12 +34,13 @@ cv::Mat CrnnResizeImg(cv::Mat img, float wh_ratio, int rec_image_height) { ...@@ -34,12 +34,13 @@ cv::Mat CrnnResizeImg(cv::Mat img, float wh_ratio, int rec_image_height) {
resize_w = imgW; resize_w = imgW;
else else
resize_w = int(ceilf(imgH * ratio)); resize_w = int(ceilf(imgH * ratio));
cv::Mat resize_img;
cv::resize(img, resize_img, cv::Size(resize_w, imgH), 0.f, 0.f, cv::resize(img, resize_img, cv::Size(resize_w, imgH), 0.f, 0.f,
cv::INTER_LINEAR); cv::INTER_LINEAR);
cv::copyMakeBorder(resize_img, resize_img, 0, 0, 0, cv::copyMakeBorder(resize_img, resize_img, 0, 0, 0,
int(imgW - resize_img.cols), cv::BORDER_CONSTANT, int(imgW - resize_img.cols), cv::BORDER_CONSTANT,
{127, 127, 127}); {127, 127, 127});
return resize_img;
} }
std::vector<std::string> ReadDict(std::string path) { std::vector<std::string> ReadDict(std::string path) {
......
...@@ -474,7 +474,7 @@ void system(char **argv){ ...@@ -474,7 +474,7 @@ void system(char **argv){
std::vector<double> rec_times; std::vector<double> rec_times;
RunRecModel(boxes, srcimg, rec_predictor, rec_text, rec_text_score, RunRecModel(boxes, srcimg, rec_predictor, rec_text, rec_text_score,
charactor_dict, cls_predictor, use_direction_classify, &rec_times); charactor_dict, cls_predictor, use_direction_classify, &rec_times, rec_image_height);
//// visualization //// visualization
auto img_vis = Visualization(srcimg, boxes); auto img_vis = Visualization(srcimg, boxes);
......
...@@ -57,17 +57,24 @@ class CELoss(nn.Layer): ...@@ -57,17 +57,24 @@ class CELoss(nn.Layer):
class KLJSLoss(object): class KLJSLoss(object):
def __init__(self, mode='kl'): def __init__(self, mode='kl'):
assert mode in ['kl', 'js', 'KL', 'JS' assert mode in ['kl', 'js', 'KL', 'JS'
], "mode can only be one of ['kl', 'js', 'KL', 'JS']" ], "mode can only be one of ['kl', 'KL', 'js', 'JS']"
self.mode = mode self.mode = mode
def __call__(self, p1, p2, reduction="mean"): def __call__(self, p1, p2, reduction="mean"):
loss = paddle.multiply(p2, paddle.log((p2 + 1e-5) / (p1 + 1e-5) + 1e-5)) if self.mode.lower() == 'kl':
loss = paddle.multiply(p2, paddle.log((p2 + 1e-5) / (p1 + 1e-5) + 1e-5))
if self.mode.lower() == "js": loss += paddle.multiply(
p1, paddle.log((p1 + 1e-5) / (p2 + 1e-5) + 1e-5))
loss *= 0.5
elif self.mode.lower() == "js":
loss = paddle.multiply(p2, paddle.log((2*p2 + 1e-5) / (p1 + p2 + 1e-5) + 1e-5))
loss += paddle.multiply( loss += paddle.multiply(
p1, paddle.log((p1 + 1e-5) / (p2 + 1e-5) + 1e-5)) p1, paddle.log((2*p1 + 1e-5) / (p1 + p2 + 1e-5) + 1e-5))
loss *= 0.5 loss *= 0.5
else:
raise ValueError("The mode.lower() if KLJSLoss should be one of ['kl', 'js']")
if reduction == "mean": if reduction == "mean":
loss = paddle.mean(loss, axis=[1, 2]) loss = paddle.mean(loss, axis=[1, 2])
elif reduction == "none" or reduction is None: elif reduction == "none" or reduction is None:
...@@ -95,7 +102,7 @@ class DMLLoss(nn.Layer): ...@@ -95,7 +102,7 @@ class DMLLoss(nn.Layer):
self.act = None self.act = None
self.use_log = use_log self.use_log = use_log
self.jskl_loss = KLJSLoss(mode="js") self.jskl_loss = KLJSLoss(mode="kl")
def _kldiv(self, x, target): def _kldiv(self, x, target):
eps = 1.0e-10 eps = 1.0e-10
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册