Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
weixin_41840029
PaddleOCR
提交
68deaab1
P
PaddleOCR
项目概览
weixin_41840029
/
PaddleOCR
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleOCR
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleOCR
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
68deaab1
编写于
12月 19, 2021
作者:
M
MissPenguin
提交者:
GitHub
12月 19, 2021
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #4967 from WenmuZhou/fix_vqa
ser and re support distributed train
上级
57f01253
3ffaf7f2
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
74 addition
and
78 deletion
+74
-78
ppstructure/vqa/helper/eval_with_label_end2end.py
ppstructure/vqa/helper/eval_with_label_end2end.py
+3
-6
ppstructure/vqa/train_re.py
ppstructure/vqa/train_re.py
+34
-31
ppstructure/vqa/train_ser.py
ppstructure/vqa/train_ser.py
+37
-41
未找到文件。
ppstructure/vqa/helper/eval_with_label_end2end.py
浏览文件 @
68deaab1
...
@@ -15,13 +15,12 @@
...
@@ -15,13 +15,12 @@
import
os
import
os
import
re
import
re
import
sys
import
sys
# import Polygon
import
shapely
import
shapely
from
shapely.geometry
import
Polygon
from
shapely.geometry
import
Polygon
import
numpy
as
np
import
numpy
as
np
from
collections
import
defaultdict
from
collections
import
defaultdict
import
operator
import
operator
import
editdistance
import
Levenshtein
import
argparse
import
argparse
import
json
import
json
import
copy
import
copy
...
@@ -95,7 +94,7 @@ def ed(args, str1, str2):
...
@@ -95,7 +94,7 @@ def ed(args, str1, str2):
if
args
.
ignore_case
:
if
args
.
ignore_case
:
str1
=
str1
.
lower
()
str1
=
str1
.
lower
()
str2
=
str2
.
lower
()
str2
=
str2
.
lower
()
return
editdistance
.
eval
(
str1
,
str2
)
return
Levenshtein
.
distance
(
str1
,
str2
)
def
convert_bbox_to_polygon
(
bbox
):
def
convert_bbox_to_polygon
(
bbox
):
...
@@ -115,8 +114,6 @@ def eval_e2e(args):
...
@@ -115,8 +114,6 @@ def eval_e2e(args):
# pred
# pred
dt_results
=
parse_ser_results_fp
(
args
.
pred_json_path
,
"pred"
,
dt_results
=
parse_ser_results_fp
(
args
.
pred_json_path
,
"pred"
,
args
.
ignore_background
)
args
.
ignore_background
)
assert
set
(
gt_results
.
keys
())
==
set
(
dt_results
.
keys
())
iou_thresh
=
args
.
iou_thres
iou_thresh
=
args
.
iou_thres
num_gt_chars
=
0
num_gt_chars
=
0
gt_count
=
0
gt_count
=
0
...
@@ -124,7 +121,7 @@ def eval_e2e(args):
...
@@ -124,7 +121,7 @@ def eval_e2e(args):
hit
=
0
hit
=
0
ed_sum
=
0
ed_sum
=
0
for
img_name
in
g
t_results
:
for
img_name
in
d
t_results
:
gt_info
=
gt_results
[
img_name
]
gt_info
=
gt_results
[
img_name
]
gt_count
+=
len
(
gt_info
)
gt_count
+=
len
(
gt_info
)
...
...
ppstructure/vqa/train_re.py
浏览文件 @
68deaab1
...
@@ -36,6 +36,9 @@ from ppocr.utils.logging import get_logger
...
@@ -36,6 +36,9 @@ from ppocr.utils.logging import get_logger
def
train
(
args
):
def
train
(
args
):
logger
=
get_logger
(
log_file
=
os
.
path
.
join
(
args
.
output_dir
,
"train.log"
))
logger
=
get_logger
(
log_file
=
os
.
path
.
join
(
args
.
output_dir
,
"train.log"
))
rank
=
paddle
.
distributed
.
get_rank
()
distributed
=
paddle
.
distributed
.
get_world_size
()
>
1
print_arguments
(
args
,
logger
)
print_arguments
(
args
,
logger
)
# Added here for reproducibility (even between python 2 and 3)
# Added here for reproducibility (even between python 2 and 3)
...
@@ -45,7 +48,7 @@ def train(args):
...
@@ -45,7 +48,7 @@ def train(args):
pad_token_label_id
=
paddle
.
nn
.
CrossEntropyLoss
().
ignore_index
pad_token_label_id
=
paddle
.
nn
.
CrossEntropyLoss
().
ignore_index
# dist mode
# dist mode
if
paddle
.
distributed
.
get_world_size
()
>
1
:
if
distributed
:
paddle
.
distributed
.
init_parallel_env
()
paddle
.
distributed
.
init_parallel_env
()
tokenizer
=
LayoutXLMTokenizer
.
from_pretrained
(
args
.
model_name_or_path
)
tokenizer
=
LayoutXLMTokenizer
.
from_pretrained
(
args
.
model_name_or_path
)
...
@@ -59,8 +62,8 @@ def train(args):
...
@@ -59,8 +62,8 @@ def train(args):
args
.
model_name_or_path
)
args
.
model_name_or_path
)
# dist mode
# dist mode
if
paddle
.
distributed
.
get_world_size
()
>
1
:
if
distributed
:
model
=
paddle
.
distributed
.
DataParallel
(
model
)
model
=
paddle
.
DataParallel
(
model
)
train_dataset
=
XFUNDataset
(
train_dataset
=
XFUNDataset
(
tokenizer
,
tokenizer
,
...
@@ -90,8 +93,7 @@ def train(args):
...
@@ -90,8 +93,7 @@ def train(args):
train_sampler
=
paddle
.
io
.
DistributedBatchSampler
(
train_sampler
=
paddle
.
io
.
DistributedBatchSampler
(
train_dataset
,
batch_size
=
args
.
per_gpu_train_batch_size
,
shuffle
=
True
)
train_dataset
,
batch_size
=
args
.
per_gpu_train_batch_size
,
shuffle
=
True
)
args
.
train_batch_size
=
args
.
per_gpu_train_batch_size
*
\
max
(
1
,
paddle
.
distributed
.
get_world_size
())
train_dataloader
=
paddle
.
io
.
DataLoader
(
train_dataloader
=
paddle
.
io
.
DataLoader
(
train_dataset
,
train_dataset
,
batch_sampler
=
train_sampler
,
batch_sampler
=
train_sampler
,
...
@@ -136,7 +138,8 @@ def train(args):
...
@@ -136,7 +138,8 @@ def train(args):
args
.
per_gpu_train_batch_size
))
args
.
per_gpu_train_batch_size
))
logger
.
info
(
logger
.
info
(
" Total train batch size (w. parallel, distributed & accumulation) = {}"
.
" Total train batch size (w. parallel, distributed & accumulation) = {}"
.
format
(
args
.
train_batch_size
*
paddle
.
distributed
.
get_world_size
()))
format
(
args
.
per_gpu_train_batch_size
*
paddle
.
distributed
.
get_world_size
()))
logger
.
info
(
" Total optimization steps = {}"
.
format
(
t_total
))
logger
.
info
(
" Total optimization steps = {}"
.
format
(
t_total
))
global_step
=
0
global_step
=
0
...
@@ -170,7 +173,7 @@ def train(args):
...
@@ -170,7 +173,7 @@ def train(args):
global_step
+=
1
global_step
+=
1
total_samples
+=
batch
[
'image'
].
shape
[
0
]
total_samples
+=
batch
[
'image'
].
shape
[
0
]
if
step
%
print_step
==
0
:
if
rank
==
0
and
step
%
print_step
==
0
:
logger
.
info
(
logger
.
info
(
"epoch: [{}/{}], iter: [{}/{}], global_step:{}, train loss: {:.6f}, lr: {:.6f}, avg_reader_cost: {:.5f} sec, avg_batch_cost: {:.5f} sec, avg_samples: {:.5f}, ips: {:.5f} images/sec"
.
"epoch: [{}/{}], iter: [{}/{}], global_step:{}, train loss: {:.6f}, lr: {:.6f}, avg_reader_cost: {:.5f} sec, avg_batch_cost: {:.5f} sec, avg_samples: {:.5f}, ips: {:.5f} images/sec"
.
format
(
epoch
,
args
.
num_train_epochs
,
step
,
format
(
epoch
,
args
.
num_train_epochs
,
step
,
...
@@ -185,38 +188,38 @@ def train(args):
...
@@ -185,38 +188,38 @@ def train(args):
train_run_cost
=
0.0
train_run_cost
=
0.0
total_samples
=
0
total_samples
=
0
if
(
paddle
.
distributed
.
get_rank
()
==
0
and
args
.
eval_steps
>
0
and
if
rank
==
0
and
args
.
eval_steps
>
0
and
global_step
%
args
.
eval_steps
==
0
and
args
.
evaluate_during_training
:
global_step
%
args
.
eval_steps
==
0
):
# Log metrics
# Log metrics
if
(
paddle
.
distributed
.
get_rank
()
==
0
and
args
.
# Only evaluate when single GPU otherwise metrics may not average well
evaluate_during_training
):
# Only evaluate when single GPU otherwise metrics may not average well
results
=
evaluate
(
model
,
eval_dataloader
,
logger
)
results
=
evaluate
(
model
,
eval_dataloader
,
logger
)
if
results
[
'f1'
]
>=
best_metirc
[
'f1'
]:
if
results
[
'f1'
]
>=
best_metirc
[
'f1'
]:
best_metirc
=
results
best_metirc
=
results
output_dir
=
os
.
path
.
join
(
args
.
output_dir
,
"best_model"
)
output_dir
=
os
.
path
.
join
(
args
.
output_dir
,
"best_model"
)
os
.
makedirs
(
output_dir
,
exist_ok
=
True
)
os
.
makedirs
(
output_dir
,
exist_ok
=
True
)
if
distributed
:
model
.
_layers
.
save_pretrained
(
output_dir
)
else
:
model
.
save_pretrained
(
output_dir
)
model
.
save_pretrained
(
output_dir
)
tokenizer
.
save_pretrained
(
output_dir
)
paddle
.
save
(
args
,
os
.
path
.
join
(
output_dir
,
"training_args.bin"
))
logger
.
info
(
"Saving model checkpoint to {}"
.
format
(
output_dir
))
logger
.
info
(
"eval results: {}"
.
format
(
results
))
logger
.
info
(
"best_metirc: {}"
.
format
(
best_metirc
))
if
paddle
.
distributed
.
get_rank
()
==
0
:
# Save model checkpoint
output_dir
=
os
.
path
.
join
(
args
.
output_dir
,
"latest_model"
)
os
.
makedirs
(
output_dir
,
exist_ok
=
True
)
if
paddle
.
distributed
.
get_rank
()
==
0
:
model
.
save_pretrained
(
output_dir
)
tokenizer
.
save_pretrained
(
output_dir
)
tokenizer
.
save_pretrained
(
output_dir
)
paddle
.
save
(
args
,
paddle
.
save
(
args
,
os
.
path
.
join
(
output_dir
,
"training_args.bin"
))
os
.
path
.
join
(
output_dir
,
"training_args.bin"
))
logger
.
info
(
"Saving model checkpoint to {}"
.
format
(
logger
.
info
(
"Saving model checkpoint to {}"
.
format
(
output_dir
))
output_dir
))
logger
.
info
(
"eval results: {}"
.
format
(
results
))
logger
.
info
(
"best_metirc: {}"
.
format
(
best_metirc
))
reader_start
=
time
.
time
()
reader_start
=
time
.
time
()
if
rank
==
0
:
# Save model checkpoint
output_dir
=
os
.
path
.
join
(
args
.
output_dir
,
"latest_model"
)
os
.
makedirs
(
output_dir
,
exist_ok
=
True
)
if
distributed
:
model
.
_layers
.
save_pretrained
(
output_dir
)
else
:
model
.
save_pretrained
(
output_dir
)
tokenizer
.
save_pretrained
(
output_dir
)
paddle
.
save
(
args
,
os
.
path
.
join
(
output_dir
,
"training_args.bin"
))
logger
.
info
(
"Saving model checkpoint to {}"
.
format
(
output_dir
))
logger
.
info
(
"best_metirc: {}"
.
format
(
best_metirc
))
logger
.
info
(
"best_metirc: {}"
.
format
(
best_metirc
))
...
...
ppstructure/vqa/train_ser.py
浏览文件 @
68deaab1
...
@@ -37,6 +37,9 @@ from ppocr.utils.logging import get_logger
...
@@ -37,6 +37,9 @@ from ppocr.utils.logging import get_logger
def
train
(
args
):
def
train
(
args
):
os
.
makedirs
(
args
.
output_dir
,
exist_ok
=
True
)
os
.
makedirs
(
args
.
output_dir
,
exist_ok
=
True
)
rank
=
paddle
.
distributed
.
get_rank
()
distributed
=
paddle
.
distributed
.
get_world_size
()
>
1
logger
=
get_logger
(
log_file
=
os
.
path
.
join
(
args
.
output_dir
,
"train.log"
))
logger
=
get_logger
(
log_file
=
os
.
path
.
join
(
args
.
output_dir
,
"train.log"
))
print_arguments
(
args
,
logger
)
print_arguments
(
args
,
logger
)
...
@@ -44,7 +47,7 @@ def train(args):
...
@@ -44,7 +47,7 @@ def train(args):
pad_token_label_id
=
paddle
.
nn
.
CrossEntropyLoss
().
ignore_index
pad_token_label_id
=
paddle
.
nn
.
CrossEntropyLoss
().
ignore_index
# dist mode
# dist mode
if
paddle
.
distributed
.
get_world_size
()
>
1
:
if
distributed
:
paddle
.
distributed
.
init_parallel_env
()
paddle
.
distributed
.
init_parallel_env
()
tokenizer
=
LayoutXLMTokenizer
.
from_pretrained
(
args
.
model_name_or_path
)
tokenizer
=
LayoutXLMTokenizer
.
from_pretrained
(
args
.
model_name_or_path
)
...
@@ -59,7 +62,7 @@ def train(args):
...
@@ -59,7 +62,7 @@ def train(args):
args
.
model_name_or_path
)
args
.
model_name_or_path
)
# dist mode
# dist mode
if
paddle
.
distributed
.
get_world_size
()
>
1
:
if
distributed
:
model
=
paddle
.
DataParallel
(
model
)
model
=
paddle
.
DataParallel
(
model
)
train_dataset
=
XFUNDataset
(
train_dataset
=
XFUNDataset
(
...
@@ -88,9 +91,6 @@ def train(args):
...
@@ -88,9 +91,6 @@ def train(args):
train_sampler
=
paddle
.
io
.
DistributedBatchSampler
(
train_sampler
=
paddle
.
io
.
DistributedBatchSampler
(
train_dataset
,
batch_size
=
args
.
per_gpu_train_batch_size
,
shuffle
=
True
)
train_dataset
,
batch_size
=
args
.
per_gpu_train_batch_size
,
shuffle
=
True
)
args
.
train_batch_size
=
args
.
per_gpu_train_batch_size
*
max
(
1
,
paddle
.
distributed
.
get_world_size
())
train_dataloader
=
paddle
.
io
.
DataLoader
(
train_dataloader
=
paddle
.
io
.
DataLoader
(
train_dataset
,
train_dataset
,
batch_sampler
=
train_sampler
,
batch_sampler
=
train_sampler
,
...
@@ -134,7 +134,7 @@ def train(args):
...
@@ -134,7 +134,7 @@ def train(args):
args
.
per_gpu_train_batch_size
)
args
.
per_gpu_train_batch_size
)
logger
.
info
(
logger
.
info
(
" Total train batch size (w. parallel, distributed) = %d"
,
" Total train batch size (w. parallel, distributed) = %d"
,
args
.
train_batch_size
*
paddle
.
distributed
.
get_world_size
(),
)
args
.
per_gpu_
train_batch_size
*
paddle
.
distributed
.
get_world_size
(),
)
logger
.
info
(
" Total optimization steps = %d"
,
t_total
)
logger
.
info
(
" Total optimization steps = %d"
,
t_total
)
global_step
=
0
global_step
=
0
...
@@ -168,7 +168,7 @@ def train(args):
...
@@ -168,7 +168,7 @@ def train(args):
global_step
+=
1
global_step
+=
1
total_samples
+=
batch
[
'image'
].
shape
[
0
]
total_samples
+=
batch
[
'image'
].
shape
[
0
]
if
step
%
print_step
==
0
:
if
rank
==
0
and
step
%
print_step
==
0
:
logger
.
info
(
logger
.
info
(
"epoch: [{}/{}], iter: [{}/{}], global_step:{}, train loss: {:.6f}, lr: {:.6f}, avg_reader_cost: {:.5f} sec, avg_batch_cost: {:.5f} sec, avg_samples: {:.5f}, ips: {:.5f} images/sec"
.
"epoch: [{}/{}], iter: [{}/{}], global_step:{}, train loss: {:.6f}, lr: {:.6f}, avg_reader_cost: {:.5f} sec, avg_batch_cost: {:.5f} sec, avg_samples: {:.5f}, ips: {:.5f} images/sec"
.
format
(
epoch_id
,
args
.
num_train_epochs
,
step
,
format
(
epoch_id
,
args
.
num_train_epochs
,
step
,
...
@@ -183,47 +183,43 @@ def train(args):
...
@@ -183,47 +183,43 @@ def train(args):
train_run_cost
=
0.0
train_run_cost
=
0.0
total_samples
=
0
total_samples
=
0
if
(
paddle
.
distributed
.
get_rank
()
==
0
and
args
.
eval_steps
>
0
and
if
rank
==
0
and
args
.
eval_steps
>
0
and
global_step
%
args
.
eval_steps
==
0
and
args
.
evaluate_during_training
:
global_step
%
args
.
eval_steps
==
0
):
# Log metrics
# Log metrics
# Only evaluate when single GPU otherwise metrics may not average well
# Only evaluate when single GPU otherwise metrics may not average well
if
paddle
.
distributed
.
get_rank
(
results
,
_
=
evaluate
(
args
,
model
,
tokenizer
,
eval_dataloader
,
)
==
0
and
args
.
evaluate_during_training
:
label2id_map
,
id2label_map
,
results
,
_
=
evaluate
(
pad_token_label_id
,
logger
)
args
,
model
,
tokenizer
,
eval_dataloader
,
label2id_map
,
id2label_map
,
pad_token_label_id
,
logger
)
if
best_metrics
is
None
or
results
[
"f1"
]
>=
best_metrics
[
"f1"
]:
best_metrics
=
copy
.
deepcopy
(
results
)
if
best_metrics
is
None
or
results
[
"f1"
]
>=
best_metrics
[
output_dir
=
os
.
path
.
join
(
args
.
output_dir
,
"best_model"
)
"f1"
]:
os
.
makedirs
(
output_dir
,
exist_ok
=
True
)
best_metrics
=
copy
.
deepcopy
(
results
)
if
distributed
:
output_dir
=
os
.
path
.
join
(
args
.
output_dir
,
"best_model"
)
model
.
_layers
.
save_pretrained
(
output_dir
)
os
.
makedirs
(
output_dir
,
exist_ok
=
True
)
else
:
if
paddle
.
distributed
.
get_rank
()
==
0
:
model
.
save_pretrained
(
output_dir
)
model
.
save_pretrained
(
output_dir
)
tokenizer
.
save_pretrained
(
output_dir
)
paddle
.
save
(
args
,
os
.
path
.
join
(
output_dir
,
"training_args.bin"
))
logger
.
info
(
"Saving model checkpoint to %s"
,
output_dir
)
logger
.
info
(
"[epoch {}/{}][iter: {}/{}] results: {}"
.
format
(
epoch_id
,
args
.
num_train_epochs
,
step
,
len
(
train_dataloader
),
results
))
if
best_metrics
is
not
None
:
logger
.
info
(
"best metrics: {}"
.
format
(
best_metrics
))
if
paddle
.
distributed
.
get_rank
()
==
0
:
# Save model checkpoint
output_dir
=
os
.
path
.
join
(
args
.
output_dir
,
"latest_model"
)
os
.
makedirs
(
output_dir
,
exist_ok
=
True
)
if
paddle
.
distributed
.
get_rank
()
==
0
:
model
.
save_pretrained
(
output_dir
)
tokenizer
.
save_pretrained
(
output_dir
)
tokenizer
.
save_pretrained
(
output_dir
)
paddle
.
save
(
args
,
paddle
.
save
(
args
,
os
.
path
.
join
(
output_dir
,
"training_args.bin"
))
os
.
path
.
join
(
output_dir
,
"training_args.bin"
))
logger
.
info
(
"Saving model checkpoint to %s"
,
output_dir
)
logger
.
info
(
"Saving model checkpoint to %s"
,
output_dir
)
logger
.
info
(
"[epoch {}/{}][iter: {}/{}] results: {}"
.
format
(
epoch_id
,
args
.
num_train_epochs
,
step
,
len
(
train_dataloader
),
results
))
if
best_metrics
is
not
None
:
logger
.
info
(
"best metrics: {}"
.
format
(
best_metrics
))
reader_start
=
time
.
time
()
reader_start
=
time
.
time
()
if
rank
==
0
:
# Save model checkpoint
output_dir
=
os
.
path
.
join
(
args
.
output_dir
,
"latest_model"
)
os
.
makedirs
(
output_dir
,
exist_ok
=
True
)
if
distributed
:
model
.
_layers
.
save_pretrained
(
output_dir
)
else
:
model
.
save_pretrained
(
output_dir
)
tokenizer
.
save_pretrained
(
output_dir
)
paddle
.
save
(
args
,
os
.
path
.
join
(
output_dir
,
"training_args.bin"
))
logger
.
info
(
"Saving model checkpoint to %s"
,
output_dir
)
return
global_step
,
tr_loss
/
global_step
return
global_step
,
tr_loss
/
global_step
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录