Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
weixin_41840029
PaddleOCR
提交
6361a38f
P
PaddleOCR
项目概览
weixin_41840029
/
PaddleOCR
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleOCR
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleOCR
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
6361a38f
编写于
6月 03, 2021
作者:
littletomatodonkey
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix export model for distillation model
上级
ab4db2ac
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
62 addition
and
40 deletion
+62
-40
ppocr/losses/distillation_loss.py
ppocr/losses/distillation_loss.py
+1
-1
ppocr/modeling/architectures/distillation_model.py
ppocr/modeling/architectures/distillation_model.py
+7
-7
tools/export_model.py
tools/export_model.py
+54
-32
未找到文件。
ppocr/losses/distillation_loss.py
浏览文件 @
6361a38f
...
...
@@ -82,7 +82,7 @@ class DistillationDistanceLoss(DistanceLoss):
key
=
None
,
name
=
"loss_distance"
,
**
kargs
):
super
().
__init__
(
mode
=
mode
,
name
=
name
)
super
().
__init__
(
mode
=
mode
,
name
=
name
,
**
kargs
)
assert
isinstance
(
model_name_pairs
,
list
)
self
.
key
=
key
self
.
model_name_pairs
=
model_name_pairs
...
...
ppocr/modeling/architectures/distillation_model.py
浏览文件 @
6361a38f
...
...
@@ -34,8 +34,8 @@ class DistillationModel(nn.Layer):
config (dict): the super parameters for module.
"""
super
().
__init__
()
self
.
model_
dict
=
dict
()
index
=
0
self
.
model_
list
=
[]
self
.
model_name_list
=
[]
for
key
in
config
[
"Models"
]:
model_config
=
config
[
"Models"
][
key
]
freeze_params
=
False
...
...
@@ -46,15 +46,15 @@ class DistillationModel(nn.Layer):
pretrained
=
model_config
.
pop
(
"pretrained"
)
model
=
BaseModel
(
model_config
)
if
pretrained
is
not
None
:
load_dygraph_pretrain
(
model
,
path
=
pretrained
[
index
]
)
load_dygraph_pretrain
(
model
,
path
=
pretrained
)
if
freeze_params
:
for
param
in
model
.
parameters
():
param
.
trainable
=
False
self
.
model_
dict
[
key
]
=
self
.
add_sublayer
(
key
,
model
)
index
+=
1
self
.
model_
list
.
append
(
self
.
add_sublayer
(
key
,
model
)
)
self
.
model_name_list
.
append
(
key
)
def
forward
(
self
,
x
):
result_dict
=
dict
()
for
key
in
self
.
model_dict
:
result_dict
[
key
]
=
self
.
model_dict
[
key
](
x
)
for
idx
,
model_name
in
enumerate
(
self
.
model_name_list
)
:
result_dict
[
model_name
]
=
self
.
model_list
[
idx
](
x
)
return
result_dict
tools/export_model.py
浏览文件 @
6361a38f
...
...
@@ -17,7 +17,7 @@ import sys
__dir__
=
os
.
path
.
dirname
(
os
.
path
.
abspath
(
__file__
))
sys
.
path
.
append
(
__dir__
)
sys
.
path
.
append
(
os
.
path
.
abspath
(
os
.
path
.
join
(
__dir__
,
'..'
)))
sys
.
path
.
append
(
os
.
path
.
abspath
(
os
.
path
.
join
(
__dir__
,
".."
)))
import
argparse
...
...
@@ -31,32 +31,12 @@ from ppocr.utils.logging import get_logger
from
tools.program
import
load_config
,
merge_config
,
ArgsParser
def
main
():
FLAGS
=
ArgsParser
().
parse_args
()
config
=
load_config
(
FLAGS
.
config
)
merge_config
(
FLAGS
.
opt
)
logger
=
get_logger
()
# build post process
post_process_class
=
build_post_process
(
config
[
'PostProcess'
],
config
[
'Global'
])
# build model
# for rec algorithm
if
hasattr
(
post_process_class
,
'character'
):
char_num
=
len
(
getattr
(
post_process_class
,
'character'
))
config
[
'Architecture'
][
"Head"
][
'out_channels'
]
=
char_num
model
=
build_model
(
config
[
'Architecture'
])
init_model
(
config
,
model
,
logger
)
model
.
eval
()
save_path
=
'{}/inference'
.
format
(
config
[
'Global'
][
'save_inference_dir'
])
if
config
[
'Architecture'
][
'algorithm'
]
==
"SRN"
:
max_text_length
=
config
[
'Architecture'
][
'Head'
][
'max_text_length'
]
def
export_single_model
(
model
,
arch_config
,
save_path
,
logger
):
if
arch_config
[
"algorithm"
]
==
"SRN"
:
max_text_length
=
arch_config
[
"Head"
][
"max_text_length"
]
other_shape
=
[
paddle
.
static
.
InputSpec
(
shape
=
[
None
,
1
,
64
,
256
],
dtype
=
'float32'
),
[
shape
=
[
None
,
1
,
64
,
256
],
dtype
=
"float32"
),
[
paddle
.
static
.
InputSpec
(
shape
=
[
None
,
256
,
1
],
dtype
=
"int64"
),
paddle
.
static
.
InputSpec
(
...
...
@@ -71,24 +51,66 @@ def main():
model
=
to_static
(
model
,
input_spec
=
other_shape
)
else
:
infer_shape
=
[
3
,
-
1
,
-
1
]
if
config
[
'Architecture'
][
'model_type'
]
==
"rec"
:
if
arch_config
[
"model_type"
]
==
"rec"
:
infer_shape
=
[
3
,
32
,
-
1
]
# for rec model, H must be 32
if
'Transform'
in
config
[
'Architecture'
]
and
config
[
'Architecture'
]
[
'Transform'
]
is
not
None
and
config
[
'Architecture'
][
'Transform'
][
'name'
]
==
'TPS'
:
if
"Transform"
in
arch_config
and
arch_config
[
"Transform"
]
is
not
None
and
arch_config
[
"Transform"
][
"name"
]
==
"TPS"
:
logger
.
info
(
'When there is tps in the network, variable length input is not supported, and the input size needs to be the same as during training'
"When there is tps in the network, variable length input is not supported, and the input size needs to be the same as during training"
)
infer_shape
[
-
1
]
=
100
model
=
to_static
(
model
,
input_spec
=
[
paddle
.
static
.
InputSpec
(
shape
=
[
None
]
+
infer_shape
,
dtype
=
'float32'
)
shape
=
[
None
]
+
infer_shape
,
dtype
=
"float32"
)
])
paddle
.
jit
.
save
(
model
,
save_path
)
logger
.
info
(
'inference model is saved to {}'
.
format
(
save_path
))
logger
.
info
(
"inference model is saved to {}"
.
format
(
save_path
))
return
def
main
():
FLAGS
=
ArgsParser
().
parse_args
()
config
=
load_config
(
FLAGS
.
config
)
merge_config
(
FLAGS
.
opt
)
logger
=
get_logger
()
# build post process
post_process_class
=
build_post_process
(
config
[
"PostProcess"
],
config
[
"Global"
])
# build model
# for rec algorithm
if
hasattr
(
post_process_class
,
"character"
):
char_num
=
len
(
getattr
(
post_process_class
,
"character"
))
if
config
[
"Architecture"
][
"algorithm"
]
in
[
"Distillation"
,
]:
# distillation model
for
key
in
config
[
"Architecture"
][
"Models"
]:
config
[
"Architecture"
][
"Models"
][
key
][
"Head"
][
"out_channels"
]
=
char_num
else
:
# base rec model
config
[
"Architecture"
][
"Head"
][
"out_channels"
]
=
char_num
model
=
build_model
(
config
[
"Architecture"
])
init_model
(
config
,
model
,
logger
)
model
.
eval
()
save_path
=
config
[
"Global"
][
"save_inference_dir"
]
arch_config
=
config
[
"Architecture"
]
if
arch_config
[
"algorithm"
]
in
[
"Distillation"
,
]:
# distillation model
archs
=
list
(
arch_config
[
"Models"
].
values
())
for
idx
,
name
in
enumerate
(
model
.
model_name_list
):
sub_model_save_path
=
os
.
path
.
join
(
save_path
,
name
,
"inference"
)
export_single_model
(
model
.
model_list
[
idx
],
archs
[
idx
],
sub_model_save_path
,
logger
)
else
:
save_path
=
os
.
path
.
join
(
save_path
,
"inference"
)
export_single_model
(
model
,
arch_config
,
save_path
,
logger
)
if
__name__
==
"__main__"
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录