"Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES via export CUDA_VISIBLE_DEVICES=cuda_device_id."
)
cfg.ir_optim=True
cfg.enable_mkldnn=enable_mkldnn
self.ser_predictor=SerPredictor(cfg)
defmerge_configs(self,):
# deafult cfg
backup_argv=copy.deepcopy(sys.argv)
sys.argv=sys.argv[:1]
cfg=parse_args()
update_cfg_map=vars(read_params())
forkeyinupdate_cfg_map:
cfg.__setattr__(key,update_cfg_map[key])
sys.argv=copy.deepcopy(backup_argv)
returncfg
defread_images(self,paths=[]):
images=[]
forimg_pathinpaths:
assertos.path.isfile(
img_path),"The {} isn't a valid file.".format(img_path)
img=cv2.imread(img_path)
ifimgisNone:
logger.info("error in loading image:{}".format(img_path))
continue
images.append(img)
returnimages
defpredict(self,images=[],paths=[]):
"""
Get the chinese texts in the predicted images.
Args:
images (list(numpy.ndarray)): images data, shape of each is [H, W, C]. If images not paths
paths (list[str]): The paths of images. If paths not images
Returns:
res (list): The result of chinese texts and save path of images.
"Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES via export CUDA_VISIBLE_DEVICES=cuda_device_id."
)
cfg.ir_optim=True
cfg.enable_mkldnn=enable_mkldnn
self.ser_re_predictor=SerRePredictor(cfg)
defmerge_configs(self,):
# deafult cfg
backup_argv=copy.deepcopy(sys.argv)
sys.argv=sys.argv[:1]
cfg=parse_args()
update_cfg_map=vars(read_params())
forkeyinupdate_cfg_map:
cfg.__setattr__(key,update_cfg_map[key])
sys.argv=copy.deepcopy(backup_argv)
returncfg
defread_images(self,paths=[]):
images=[]
forimg_pathinpaths:
assertos.path.isfile(
img_path),"The {} isn't a valid file.".format(img_path)
img=cv2.imread(img_path)
ifimgisNone:
logger.info("error in loading image:{}".format(img_path))
continue
images.append(img)
returnimages
defpredict(self,images=[],paths=[]):
"""
Get the chinese texts in the predicted images.
Args:
images (list(numpy.ndarray)): images data, shape of each is [H, W, C]. If images not paths
paths (list[str]): The paths of images. If paths not images
Returns:
res (list): The result of chinese texts and save path of images.
**The model path can be found and modified in `params.py`.** More models provided by PaddleOCR can be obtained from the [model library](../../doc/doc_en/models_list_en.md). You can also use models trained by yourself.
@@ -201,6 +215,8 @@ For example, if using the configuration file to start the text angle classificat
`http://127.0.0.1:8869/predict/structure_table`
`http://127.0.0.1:8870/predict/structure_system`
`http://127.0.0.1:8870/predict/structure_layout`
`http://127.0.0.1:8871/predict/kie_ser`
`http://127.0.0.1:8872/predict/kie_ser_re`
-**image_dir**:Test image path, can be a single image path or an image directory path
-**visualize**:Whether to visualize the results, the default value is False
-**output**:The floder to save Visualization result, default value is `./hubserving_result`
...
...
@@ -225,15 +241,17 @@ The returned result is a list. Each item in the list is a dict. The dict may con
The fields returned by different modules are different. For example, the results returned by the text recognition service module do not contain `text_region`. The details are as follows:
| field name/module name | ocr_det | ocr_cls | ocr_rec | ocr_system | structure_table | structure_system | structure_layout |
**Note:** If you need to add, delete or modify the returned fields, you can modify the file `module.py` of the corresponding module. For the complete process, refer to the user-defined modification service module in the next section.