未验证 提交 4635cf98 编写于 作者: C cuicheng01 提交者: GitHub

Update FAQ.md

上级 644bec9f
......@@ -9,34 +9,34 @@
## PaddleOCR常见问题汇总(持续更新)
* [近期更新(2021.3.22](#近期更新)
* [近期更新(2021.4.6](#近期更新)
* [【精选】OCR精选10个问题](#OCR精选10个问题)
* [【理论篇】OCR通用40个问题](#OCR通用问题)
* [基础知识13题](#基础知识)
* [数据集8题](#数据集2)
* [模型训练调优19](#模型训练调优2)
* [模型训练调优20](#模型训练调优2)
* [【实战篇】PaddleOCR实战143个问题](#PaddleOCR实战问题)
* [使用咨询54](#使用咨询)
* [使用咨询56](#使用咨询)
* [数据集18题](#数据集3)
* [模型训练调优32](#模型训练调优3)
* [预测部署39](#预测部署3)
* [模型训练调优33](#模型训练调优3)
* [预测部署40](#预测部署3)
<a name="近期更新"></a>
## 近期更新(2021.3.22
#### Q2.1.13: PaddleOCR提供的文本识别算法包括哪些
**A**: PaddleOCR主要提供五种文本识别算法,包括CRNN\StarNet\RARAE\Rosetta和SRN, 其中CRNN\StarNet和Rosetta是基于ctc的文字识别算法,RARE是基于attention的文字识别算法;SRN为百度自研的文本识别算法,引入了语义信息,显著提升了准确率。 详情可参照如下页面:[文本识别算法](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.0/doc/doc_ch/algorithm_overview.md#%E6%96%87%E6%9C%AC%E8%AF%86%E5%88%AB%E7%AE%97%E6%B3%95)
## 近期更新(2021.4.6
#### Q3.4.40: 使用hub_serving部署,延时较高,可能的原因是什么呀
**A**: 首先,测试的时候第一张图延时较高,可以多测试几张然后观察后几张图的速度;其次,如果是在cpu端部署serving端模型(如backbone为ResNet34),耗时较慢,建议在cpu端部署mobile(如backbone为MobileNetV3)模型。
#### Q2.2.8: DBNet如果想使用多边形作为输入,数据标签格式应该如何设定
**A**如果想使用多边形作为DBNet的输入,数据标签也应该用多边形来表示。这样子可以更好得拟合弯曲文本。PPOCRLabel暂时只支持矩形框标注和四边形框标注。
#### Q2.3.20: 如何根据不同的硬件平台选用不同的backbone
**A**在不同的硬件上,不同的backbone的速度优势不同,可以根据不同平台的速度-精度图来确定backbone,这里可以参考https://github.com/PaddlePaddle/PaddleClas/tree/release/2.0/docs/zh_CN/models
#### Q2.3.19: 参照文档做实际项目时,是重新训练还是在官方训练的基础上进行训练?具体如何操作
**A**基于官方提供的模型,进行finetune的话,收敛会更快一些。 具体操作上,以识别模型训练为例:如果修改了字符文件,可以设置pretraind_model为官方提供的预训练模型
#### Q3.1.55: 目前PaddleOCR有知识蒸馏的demo吗
**A**目前我们还没有提供PaddleOCR知识蒸馏的相关demo,PaddleClas开源了一个效果还不错的方案,可以移步https://github.com/PaddlePaddle/PaddleClas/blob/release%2F2.0/docs/zh_CN/advanced_tutorials/distillation/distillation.md, paper: https://arxiv.org/abs/2103.05959。 关于PaddleOCR的蒸馏,我们也会在未来支持。
#### Q3.1.53: 预测时提示图像过大,显存、内存溢出了,应该如何处理
**A**: 可以按照这个PR的修改来缓解显存、内存占用 [#2230](https://github.com/PaddlePaddle/PaddleOCR/pull/2230)
#### Q3.3.33: 训练识别和检测时学习率要加上warmup,目的是什么
**A**: Warmup机制先使学习率从一个较小的值逐步升到一个较大的值,而不是直接就使用较大的学习率,这样有助于模型的稳定收敛。在OCR检测和OCR识别中,一般会带来精度~0.5%的提升。
#### Q3.1.54: 用c++来部署,目前支持Paddle2.0的模型吗
**A**: PPOCR 2.0的模型在arm上运行可以参照该PR [#1877](https://github.com/PaddlePaddle/PaddleOCR/pull/1877)
#### Q3.1.56: 在使用PPOCRLabel的时候,如何标注倾斜的文字
**A**: 如果矩形框标注后空白冗余较多,可以尝试PPOCRLabel提供的四点标注,可以标注各种倾斜角度的文本。
<a name="OCR精选10个问题"></a>
## 【精选】OCR精选10个问题
......@@ -310,6 +310,9 @@
#### Q2.3.19: 参照文档做实际项目时,是重新训练还是在官方训练的基础上进行训练?具体如何操作?
**A**: 基于官方提供的模型,进行finetune的话,收敛会更快一些。 具体操作上,以识别模型训练为例:如果修改了字符文件,可以设置pretraind_model为官方提供的预训练模型
#### Q2.3.20: 如何根据不同的硬件平台选用不同的backbone?
**A**:在不同的硬件上,不同的backbone的速度优势不同,可以根据不同平台的速度-精度图来确定backbone,这里可以参考https://github.com/PaddlePaddle/PaddleClas/tree/release/2.0/docs/zh_CN/models
<a name="PaddleOCR实战问题"></a>
## 【实战篇】PaddleOCR实战问题
......@@ -595,6 +598,13 @@ repo中config.yml文件的前后处理参数和inference预测默认的超参数
#### Q3.1.54: 用c++来部署,目前支持Paddle2.0的模型吗?
**A**: PPOCR 2.0的模型在arm上运行可以参照该PR [#1877](https://github.com/PaddlePaddle/PaddleOCR/pull/1877)
#### Q3.1.55: 目前PaddleOCR有知识蒸馏的demo吗?
**A**: 目前我们还没有提供PaddleOCR知识蒸馏的相关demo,PaddleClas开源了一个效果还不错的方案,可以移步https://github.com/PaddlePaddle/PaddleClas/blob/release%2F2.0/docs/zh_CN/advanced_tutorials/distillation/distillation.md, paper: https://arxiv.org/abs/2103.05959。 关于PaddleOCR的蒸馏,我们也会在未来支持。
#### Q3.1.56: 在使用PPOCRLabel的时候,如何标注倾斜的文字?
**A**: 如果矩形框标注后空白冗余较多,可以尝试PPOCRLabel提供的四点标注,可以标注各种倾斜角度的文本。
<a name="数据集3"></a>
### 数据集
......@@ -861,8 +871,12 @@ lr:
warmup_epoch: 2
```
#### Q3.3.33: 训练识别和检测时学习率要加上warmup,目的是什么?
**A**: Warmup机制先使学习率从一个较小的值逐步升到一个较大的值,而不是直接就使用较大的学习率,这样有助于模型的稳定收敛。在OCR检测和OCR识别中,一般会带来精度~0.5%的提升。
<a name="预测部署3"></a>
### 预测部署
#### Q3.4.1:如何pip安装opt模型转换工具?
......@@ -1053,3 +1067,7 @@ nvidia-smi --lock-gpu-clocks=1590 -i 0
#### Q3.4.39:内网环境如何进行服务化部署呢?
**A**:仍然可以使用PaddleServing或者HubServing进行服务化部署,保证内网地址可以访问即可。
#### Q3.4.40: 使用hub_serving部署,延时较高,可能的原因是什么呀?
**A**: 首先,测试的时候第一张图延时较高,可以多测试几张然后观察后几张图的速度;其次,如果是在cpu端部署serving端模型(如backbone为ResNet34),耗时较慢,建议在cpu端部署mobile(如backbone为MobileNetV3)模型。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册