Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
weixin_41840029
PaddleOCR
提交
45313ff3
P
PaddleOCR
项目概览
weixin_41840029
/
PaddleOCR
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleOCR
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleOCR
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
45313ff3
编写于
8月 17, 2021
作者:
T
topduke
提交者:
GitHub
8月 17, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Update multiheadAttention.py
上级
685394cb
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
1 addition
and
209 deletion
+1
-209
ppocr/modeling/backbones/multiheadAttention.py
ppocr/modeling/backbones/multiheadAttention.py
+1
-209
未找到文件。
ppocr/modeling/backbones/multiheadAttention.py
浏览文件 @
45313ff3
...
...
@@ -9,214 +9,6 @@ from paddle.nn.initializer import XavierNormal as xavier_normal_
zeros_
=
constant_
(
value
=
0.
)
ones_
=
constant_
(
value
=
1.
)
class
MultiheadAttention
(
nn
.
Layer
):
r
"""Allows the model to jointly attend to information
from different representation subspaces.
See reference: Attention Is All You Need
.. math::
\text{MultiHead}(Q, K, V) = \text{Concat}(head_1,\dots,head_h)W^O
\text{where} head_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V)
Args:
embed_dim: total dimension of the model
num_heads: parallel attention layers, or heads
Examples::
>>> multihead_attn = nn.MultiheadAttention(embed_dim, num_heads)
>>> attn_output, attn_output_weights = multihead_attn(query, key, value)
"""
def
__init__
(
self
,
embed_dim
,
num_heads
,
dropout
=
0.
,
bias
=
True
,
add_bias_kv
=
False
,
add_zero_attn
=
False
):
super
(
MultiheadAttention
,
self
).
__init__
()
self
.
embed_dim
=
embed_dim
self
.
num_heads
=
num_heads
self
.
dropout
=
dropout
self
.
head_dim
=
embed_dim
//
num_heads
assert
self
.
head_dim
*
num_heads
==
self
.
embed_dim
,
"embed_dim must be divisible by num_heads"
self
.
scaling
=
self
.
head_dim
**
-
0.5
self
.
out_proj
=
Linear
(
embed_dim
,
embed_dim
,
bias_attr
=
bias
)
if
add_bias_kv
:
self
.
bias_k
=
self
.
create_parameter
(
shape
=
(
1
,
1
,
embed_dim
),
default_initializer
=
zeros_
)
self
.
add_parameter
(
"bias_k"
,
self
.
bias_k
)
self
.
bias_v
=
self
.
create_parameter
(
shape
=
(
1
,
1
,
embed_dim
),
default_initializer
=
zeros_
)
self
.
add_parameter
(
"bias_v"
,
self
.
bias_v
)
else
:
self
.
bias_k
=
self
.
bias_v
=
None
self
.
add_zero_attn
=
add_zero_attn
self
.
_reset_parameters
()
self
.
conv1
=
paddle
.
nn
.
Conv2D
(
in_channels
=
embed_dim
,
out_channels
=
embed_dim
,
kernel_size
=
(
1
,
1
))
self
.
conv2
=
paddle
.
nn
.
Conv2D
(
in_channels
=
embed_dim
,
out_channels
=
embed_dim
*
2
,
kernel_size
=
(
1
,
1
))
self
.
conv3
=
paddle
.
nn
.
Conv2D
(
in_channels
=
embed_dim
,
out_channels
=
embed_dim
*
3
,
kernel_size
=
(
1
,
1
))
def
_reset_parameters
(
self
):
xavier_uniform_
(
self
.
out_proj
.
weight
)
if
self
.
bias_k
is
not
None
:
xavier_normal_
(
self
.
bias_k
)
if
self
.
bias_v
is
not
None
:
xavier_normal_
(
self
.
bias_v
)
def
forward
(
self
,
query
,
key
,
value
,
key_padding_mask
=
None
,
incremental_state
=
None
,
need_weights
=
True
,
static_kv
=
False
,
attn_mask
=
None
,
qkv_
=
[
False
,
False
,
False
]):
"""
Inputs of forward function
query: [target length, batch size, embed dim]
key: [sequence length, batch size, embed dim]
value: [sequence length, batch size, embed dim]
key_padding_mask: if True, mask padding based on batch size
incremental_state: if provided, previous time steps are cashed
need_weights: output attn_output_weights
static_kv: key and value are static
Outputs of forward function
attn_output: [target length, batch size, embed dim]
attn_output_weights: [batch size, target length, sequence length]
"""
qkv_same
=
qkv_
[
0
]
kv_same
=
qkv_
[
1
]
tgt_len
,
bsz
,
embed_dim
=
query
.
shape
assert
embed_dim
==
self
.
embed_dim
assert
list
(
query
.
shape
)
==
[
tgt_len
,
bsz
,
embed_dim
]
assert
key
.
shape
==
value
.
shape
if
qkv_same
:
# self-attention
q
,
k
,
v
=
self
.
_in_proj_qkv
(
query
)
elif
kv_same
:
# encoder-decoder attention
q
=
self
.
_in_proj_q
(
query
)
if
key
is
None
:
assert
value
is
None
k
=
v
=
None
else
:
k
,
v
=
self
.
_in_proj_kv
(
key
)
else
:
q
=
self
.
_in_proj_q
(
query
)
k
=
self
.
_in_proj_k
(
key
)
v
=
self
.
_in_proj_v
(
value
)
q
*=
self
.
scaling
if
self
.
bias_k
is
not
None
:
assert
self
.
bias_v
is
not
None
self
.
bias_k
=
paddle
.
concat
([
self
.
bias_k
for
i
in
range
(
bsz
)],
axis
=
1
)
self
.
bias_v
=
paddle
.
concat
([
self
.
bias_v
for
i
in
range
(
bsz
)],
axis
=
1
)
k
=
paddle
.
concat
([
k
,
self
.
bias_k
])
v
=
paddle
.
concat
([
v
,
self
.
bias_v
])
if
attn_mask
is
not
None
:
attn_mask
=
paddle
.
concat
([
attn_mask
,
paddle
.
zeros
([
attn_mask
.
shape
[
0
],
1
],
dtype
=
attn_mask
.
dtype
)],
axis
=
1
)
if
key_padding_mask
is
not
None
:
key_padding_mask
=
paddle
.
concat
(
[
key_padding_mask
,
paddle
.
zeros
([
key_padding_mask
.
shape
[
0
],
1
],
dtype
=
key_padding_mask
.
dtype
)],
axis
=
1
)
q
=
q
.
reshape
([
tgt_len
,
bsz
*
self
.
num_heads
,
self
.
head_dim
]).
transpose
([
1
,
0
,
2
])
if
k
is
not
None
:
k
=
k
.
reshape
([
-
1
,
bsz
*
self
.
num_heads
,
self
.
head_dim
]).
transpose
([
1
,
0
,
2
])
if
v
is
not
None
:
v
=
v
.
reshape
([
-
1
,
bsz
*
self
.
num_heads
,
self
.
head_dim
]).
transpose
([
1
,
0
,
2
])
src_len
=
k
.
shape
[
1
]
if
key_padding_mask
is
not
None
:
assert
key_padding_mask
.
shape
[
0
]
==
bsz
assert
key_padding_mask
.
shape
[
1
]
==
src_len
if
self
.
add_zero_attn
:
src_len
+=
1
k
=
paddle
.
concat
([
k
,
paddle
.
zeros
((
k
.
shape
[
0
],
1
)
+
k
.
shape
[
2
:],
dtype
=
k
.
dtype
)],
axis
=
1
)
v
=
paddle
.
concat
([
v
,
paddle
.
zeros
((
v
.
shape
[
0
],
1
)
+
v
.
shape
[
2
:],
dtype
=
v
.
dtype
)],
axis
=
1
)
if
attn_mask
is
not
None
:
attn_mask
=
paddle
.
concat
([
attn_mask
,
paddle
.
zeros
([
attn_mask
.
shape
[
0
],
1
],
dtype
=
attn_mask
.
dtype
)],
axis
=
1
)
if
key_padding_mask
is
not
None
:
key_padding_mask
=
paddle
.
concat
(
[
key_padding_mask
,
paddle
.
zeros
([
key_padding_mask
.
shape
[
0
],
1
],
dtype
=
key_padding_mask
.
dtype
)],
axis
=
1
)
attn_output_weights
=
paddle
.
bmm
(
q
,
k
.
transpose
([
0
,
2
,
1
]))
assert
list
(
attn_output_weights
.
shape
)
==
[
bsz
*
self
.
num_heads
,
tgt_len
,
src_len
]
if
attn_mask
is
not
None
:
attn_mask
=
attn_mask
.
unsqueeze
(
0
)
attn_output_weights
+=
attn_mask
if
key_padding_mask
is
not
None
:
attn_output_weights
=
attn_output_weights
.
reshape
([
bsz
,
self
.
num_heads
,
tgt_len
,
src_len
])
key
=
key_padding_mask
.
unsqueeze
(
1
).
unsqueeze
(
2
).
astype
(
'float32'
)
y
=
paddle
.
full
(
shape
=
key
.
shape
,
dtype
=
'float32'
,
fill_value
=
'-inf'
)
y
=
paddle
.
where
(
key
==
0.
,
key
,
y
)
attn_output_weights
+=
y
attn_output_weights
=
attn_output_weights
.
reshape
([
bsz
*
self
.
num_heads
,
tgt_len
,
src_len
])
attn_output_weights
=
F
.
softmax
(
attn_output_weights
.
astype
(
'float32'
),
axis
=-
1
,
dtype
=
paddle
.
float32
if
attn_output_weights
.
dtype
==
paddle
.
float16
else
attn_output_weights
.
dtype
)
attn_output_weights
=
F
.
dropout
(
attn_output_weights
,
p
=
self
.
dropout
,
training
=
self
.
training
)
attn_output
=
paddle
.
bmm
(
attn_output_weights
,
v
)
assert
list
(
attn_output
.
shape
)
==
[
bsz
*
self
.
num_heads
,
tgt_len
,
self
.
head_dim
]
attn_output
=
attn_output
.
transpose
([
1
,
0
,
2
]).
reshape
([
tgt_len
,
bsz
,
embed_dim
])
attn_output
=
self
.
out_proj
(
attn_output
)
if
need_weights
:
# average attention weights over heads
attn_output_weights
=
attn_output_weights
.
reshape
([
bsz
,
self
.
num_heads
,
tgt_len
,
src_len
])
attn_output_weights
=
attn_output_weights
.
sum
(
axis
=
1
)
/
self
.
num_heads
else
:
attn_output_weights
=
None
return
attn_output
,
attn_output_weights
def
_in_proj_qkv
(
self
,
query
):
query
=
query
.
transpose
([
1
,
2
,
0
])
query
=
paddle
.
unsqueeze
(
query
,
axis
=
2
)
res
=
self
.
conv3
(
query
)
res
=
paddle
.
squeeze
(
res
,
axis
=
2
)
res
=
res
.
transpose
([
2
,
0
,
1
])
return
res
.
chunk
(
3
,
axis
=-
1
)
def
_in_proj_kv
(
self
,
key
):
key
=
key
.
transpose
([
1
,
2
,
0
])
key
=
paddle
.
unsqueeze
(
key
,
axis
=
2
)
res
=
self
.
conv2
(
key
)
res
=
paddle
.
squeeze
(
res
,
axis
=
2
)
res
=
res
.
transpose
([
2
,
0
,
1
])
return
res
.
chunk
(
2
,
axis
=-
1
)
def
_in_proj_q
(
self
,
query
):
query
=
query
.
transpose
([
1
,
2
,
0
])
query
=
paddle
.
unsqueeze
(
query
,
axis
=
2
)
res
=
self
.
conv1
(
query
)
res
=
paddle
.
squeeze
(
res
,
axis
=
2
)
res
=
res
.
transpose
([
2
,
0
,
1
])
return
res
def
_in_proj_k
(
self
,
key
):
key
=
key
.
transpose
([
1
,
2
,
0
])
key
=
paddle
.
unsqueeze
(
key
,
axis
=
2
)
res
=
self
.
conv1
(
key
)
res
=
paddle
.
squeeze
(
res
,
axis
=
2
)
res
=
res
.
transpose
([
2
,
0
,
1
])
return
res
def
_in_proj_v
(
self
,
value
):
value
=
value
.
transpose
([
1
,
2
,
0
])
#(1, 2, 0)
value
=
paddle
.
unsqueeze
(
value
,
axis
=
2
)
res
=
self
.
conv1
(
value
)
res
=
paddle
.
squeeze
(
res
,
axis
=
2
)
res
=
res
.
transpose
([
2
,
0
,
1
])
return
res
class
MultiheadAttentionOptim
(
nn
.
Layer
):
r
"""Allows the model to jointly attend to information
...
...
@@ -362,4 +154,4 @@ class MultiheadAttentionOptim(nn.Layer):
res
=
self
.
conv3
(
value
)
res
=
paddle
.
squeeze
(
res
,
axis
=
2
)
res
=
res
.
transpose
([
2
,
0
,
1
])
return
res
\ No newline at end of file
return
res
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录