提交 43d080f0 编写于 作者: littletomatodonkey's avatar littletomatodonkey 提交者: GitHub

Revert "rm infer fleet (#6577)"

This reverts commit c71f53ad.
上级 c71f53ad
...@@ -25,29 +25,29 @@ eval:null ...@@ -25,29 +25,29 @@ eval:null
null:null null:null
## ##
===========================infer_params=========================== ===========================infer_params===========================
Global.save_inference_dir:null Global.save_inference_dir:./output/
Global.checkpoints: Global.checkpoints:
norm_export:null norm_export:tools/export_model.py -c test_tipc/configs/ch_PP-OCRv3_rec/ch_PP-OCRv3_rec_distillation.yml -o
quant_export: quant_export:
fpgm_export: fpgm_export:
distill_export:null distill_export:null
export1:null export1:null
export2:null export2:null
inference_dir:null inference_dir:Student
infer_model:null infer_model:./inference/ch_PP-OCRv3_rec_infer
infer_export:null infer_export:null
infer_quant: infer_quant:False
inference: inference:tools/infer/predict_rec.py --rec_image_shape="3,48,320"
--use_gpu: --use_gpu:True|False
--enable_mkldnn: --enable_mkldnn:False
--cpu_threads: --cpu_threads:6
--rec_batch_num: --rec_batch_num:1|6
--use_tensorrt: --use_tensorrt:False
--precision: --precision:fp32
--rec_model_dir: --rec_model_dir:
--image_dir: --image_dir:./inference/rec_inference
null:null null:null
--benchmark: --benchmark:True
null:null null:null
===========================infer_benchmark_params========================== ===========================infer_benchmark_params==========================
random_infer_input:[{float32,[3,48,320]}] random_infer_input:[{float32,[3,48,320]}]
...@@ -11,6 +11,12 @@ Linux GPU/CPU 多机多卡训练推理测试的主程序为`test_train_inference ...@@ -11,6 +11,12 @@ Linux GPU/CPU 多机多卡训练推理测试的主程序为`test_train_inference
| PP-OCRv3 | ch_PP-OCRv3_rec | 分布式训练 | | PP-OCRv3 | ch_PP-OCRv3_rec | 分布式训练 |
- 推理相关:
| 算法名称 | 模型名称 | device_CPU | device_GPU | batchsize |
| :----: | :----: | :----: | :----: | :----: |
| PP-OCRv3 | ch_PP-OCRv3_rec | 支持 | 支持 | 1 |
## 2. 测试流程 ## 2. 测试流程
...@@ -56,10 +62,46 @@ bash test_tipc/test_train_inference_python.sh test_tipc/configs/ch_PP-OCRv3_rec ...@@ -56,10 +62,46 @@ bash test_tipc/test_train_inference_python.sh test_tipc/configs/ch_PP-OCRv3_rec
```bash ```bash
Run successfully with command - ch_PP-OCRv3_rec - python3.7 -m paddle.distributed.launch --ips=192.168.0.1,192.168.0.2 --gpus=0,1 tools/train.py -c test_tipc/configs/ch_PP-OCRv3_rec/ch_PP-OCRv3_rec_distillation.yml -o Global.use_gpu=True Global.save_model_dir=./test_tipc/output/ch_PP-OCRv3_rec/lite_train_lite_infer/norm_train_gpus_0,1_autocast_fp32_nodes_2 Global.epoch_num=3 Global.auto_cast=fp32 Train.loader.batch_size_per_card=16 ! Run successfully with command - ch_PP-OCRv3_rec - python3.7 -m paddle.distributed.launch --ips=192.168.0.1,192.168.0.2 --gpus=0,1 tools/train.py -c test_tipc/configs/ch_PP-OCRv3_rec/ch_PP-OCRv3_rec_distillation.yml -o Global.use_gpu=True Global.save_model_dir=./test_tipc/output/ch_PP-OCRv3_rec/lite_train_lite_infer/norm_train_gpus_0,1_autocast_fp32_nodes_2 Global.epoch_num=3 Global.auto_cast=fp32 Train.loader.batch_size_per_card=16 !
......
Run successfully with command - ch_PP-OCRv3_rec - python3.7 tools/infer/predict_rec.py --rec_image_shape="3,48,320" --use_gpu=False --enable_mkldnn=False --cpu_threads=6 --rec_model_dir=./test_tipc/output/ch_PP-OCRv3_rec/lite_train_lite_infer/norm_train_gpus_0,1_autocast_fp32_nodes_2/Student --rec_batch_num=1 --image_dir=./inference/rec_inference --benchmark=True --precision=fp32 > ./test_tipc/output/ch_PP-OCRv3_rec/lite_train_lite_infer/python_infer_cpu_usemkldnn_False_threads_6_precision_fp32_batchsize_1.log 2>&1 !
```
在开启benchmark参数时,可以得到测试的详细数据,包含运行环境信息(系统版本、CUDA版本、CUDNN版本、驱动版本),Paddle版本信息,参数设置信息(运行设备、线程数、是否开启内存优化等),模型信息(模型名称、精度),数据信息(batchsize、是否为动态shape等),性能信息(CPU,GPU的占用、运行耗时、预处理耗时、推理耗时、后处理耗时),内容如下所示:
```
[2022/06/02 22:53:35] ppocr INFO:
[2022/06/02 22:53:35] ppocr INFO: ---------------------- Env info ----------------------
[2022/06/02 22:53:35] ppocr INFO: OS_version: Ubuntu 16.04
[2022/06/02 22:53:35] ppocr INFO: CUDA_version: 10.1.243
[2022/06/02 22:53:35] ppocr INFO: CUDNN_version: 7.6.5
[2022/06/02 22:53:35] ppocr INFO: drivier_version: 460.32.03
[2022/06/02 22:53:35] ppocr INFO: ---------------------- Paddle info ----------------------
[2022/06/02 22:53:35] ppocr INFO: paddle_version: 2.3.0-rc0
[2022/06/02 22:53:35] ppocr INFO: paddle_commit: 5d4980c052583fec022812d9c29460aff7cdc18b
[2022/06/02 22:53:35] ppocr INFO: log_api_version: 1.0
[2022/06/02 22:53:35] ppocr INFO: ----------------------- Conf info -----------------------
[2022/06/02 22:53:35] ppocr INFO: runtime_device: cpu
[2022/06/02 22:53:35] ppocr INFO: ir_optim: True
[2022/06/02 22:53:35] ppocr INFO: enable_memory_optim: True
[2022/06/02 22:53:35] ppocr INFO: enable_tensorrt: False
[2022/06/02 22:53:35] ppocr INFO: enable_mkldnn: False
[2022/06/02 22:53:35] ppocr INFO: cpu_math_library_num_threads: 6
[2022/06/02 22:53:35] ppocr INFO: ----------------------- Model info ----------------------
[2022/06/02 22:53:35] ppocr INFO: model_name: rec
[2022/06/02 22:53:35] ppocr INFO: precision: fp32
[2022/06/02 22:53:35] ppocr INFO: ----------------------- Data info -----------------------
[2022/06/02 22:53:35] ppocr INFO: batch_size: 1
[2022/06/02 22:53:35] ppocr INFO: input_shape: dynamic
[2022/06/02 22:53:35] ppocr INFO: data_num: 6
[2022/06/02 22:53:35] ppocr INFO: ----------------------- Perf info -----------------------
[2022/06/02 22:53:35] ppocr INFO: cpu_rss(MB): 288.957, gpu_rss(MB): None, gpu_util: None%
[2022/06/02 22:53:35] ppocr INFO: total time spent(s): 0.4824
[2022/06/02 22:53:35] ppocr INFO: preprocess_time(ms): 0.1136, inference_time(ms): 79.5877, postprocess_time(ms): 0.6945
``` ```
该信息可以在运行log中查看,以上面的`ch_PP-OCRv3_rec`为例,log位置在`./test_tipc/output/ch_PP-OCRv3_rec/lite_train_lite_infer/results_python.log` 该信息可以在运行log中查看,以上面的`ch_PP-OCRv3_rec`为例,log位置在`./test_tipc/output/ch_PP-OCRv3_rec/lite_train_lite_infer/results_python.log`
如果运行失败,也会在终端中输出运行失败的日志信息以及对应的运行命令。可以基于该命令,分析运行失败的原因。 如果运行失败,也会在终端中输出运行失败的日志信息以及对应的运行命令。可以基于该命令,分析运行失败的原因。
**注意:** 由于分布式训练时,仅在`trainer_id=0`所在的节点中保存模型,因此如果测试多机的推理过程,其他的节点中在运行模型导出与推理时会报错,为正常现象。 **注意:** 由于分布式训练时,仅在`trainer_id=0`所在的节点中保存模型,因此其他的节点中在运行模型导出与推理时会报错,为正常现象。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册