提交 3b6a2f17 编写于 作者: L LDOUBLEV

Merge branch 'dygraph' of https://github.com/PaddlePaddle/PaddleOCR into tipc_test_allclose

......@@ -71,6 +71,8 @@ pip3 install opencv-contrib-python-headless==4.2.0.32 # 如果下载过慢请添
PPOCRLabel --lang ch # 启动
```
> 如果上述安装出现问题,可以参考3.6节 错误提示
#### 1.2.2 本地构建whl包并安装
```bash
......
......@@ -139,7 +139,7 @@ PaddleOCR欢迎大家向repo中积极贡献代码,下面给出一些贡献代
- 在PaddleOCR的 [GitHub首页](https://github.com/PaddlePaddle/PaddleOCR),点击左上角 `Fork` 按钮,在你的个人目录下创建 `远程仓库`,比如`https://github.com/{your_name}/PaddleOCR`
![banner](/Users/zhulingfeng01/OCR/PaddleOCR/doc/banner.png)
![banner](../banner.png)
-`远程仓库` Clone到本地
......@@ -230,7 +230,7 @@ pre-commit
重复上述步骤,直到pre-comit格式检查不报错。如下所示。
[![img](https://github.com/PaddlePaddle/PaddleClas/raw/release/2.3/docs/images/quick_start/community/003_precommit_pass.png)](https://github.com/PaddlePaddle/PaddleClas/blob/release/2.3/docs/images/quick_start/community/003_precommit_pass.png)
![img](../precommit_pass.png)
使用下面的命令完成提交。
......@@ -258,7 +258,7 @@ git push origin new_branch
点击new pull request,选择本地分支和目标分支,如下图所示。在PR的描述说明中,填写该PR所完成的功能。接下来等待review,如果有需要修改的地方,参照上述步骤更新 origin 中的对应分支即可。
![banner](/Users/zhulingfeng01/OCR/PaddleOCR/doc/pr.png)
![banner](../pr.png)
#### 3.2.8 签署CLA协议和通过单元测试
......
......@@ -34,7 +34,7 @@ inference 模型(`paddle.jit.save`保存的模型)
- [1. 超轻量中文OCR模型推理](#超轻量中文OCR模型推理)
- [2. 其他模型推理](#其他模型推理)
- [六、参数解释](参数解释)
- [六、参数解释](#参数解释)
<a name="训练模型转inference模型"></a>
......@@ -504,7 +504,7 @@ PSE算法相关参数如下
| e2e_model_dir | str | 无,如果使用端到端模型,该项是必填项 | 端到端模型inference模型路径 |
| e2e_limit_side_len | int | 768 | 端到端的输入图像边长限制 |
| e2e_limit_type | str | "max" | 端到端的边长限制类型,目前支持`min`, `max``min`表示保证图像最短边不小于`e2e_limit_side_len``max`表示保证图像最长边不大于`e2e_limit_side_len` |
| e2e_pgnet_score_thresh | float | xx | xx |
| e2e_pgnet_score_thresh | float | 0.5 | 端到端得分阈值,小于该阈值的结果会被丢弃 |
| e2e_char_dict_path | str | "./ppocr/utils/ic15_dict.txt" | 识别的字典文件路径 |
| e2e_pgnet_valid_set | str | "totaltext" | 验证集名称,目前支持`totaltext`, `partvgg`,不同数据集对应的后处理方式不同,与训练过程保持一致即可 |
| e2e_pgnet_mode | str | "fast" | PGNet的检测结果得分计算方法,支持`fast``slow``fast`是根据polygon的外接矩形边框内的所有像素计算平均得分,`slow`是根据原始polygon内的所有像素计算平均得分,计算速度相对较慢一些,但是更加准确一些。 |
......
# OCR模型列表(V2.1,2021年9月6日更新)
# PP-OCR系列模型列表(V2.1,2021年9月6日更新)
> **说明**
> 1. 2.1版模型相比2.0版模型,2.1的模型在模型精度上做了提升
......
......@@ -66,13 +66,13 @@ wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/pgnet/e2e_server_pgnetA_infer.
### 单张图像或者图像集合预测
```bash
# 预测image_dir指定的单张图像
python3 tools/infer/predict_e2e.py --e2e_algorithm="PGNet" --image_dir="./doc/imgs_en/img623.jpg" --e2e_model_dir="./inference/e2e_server_pgnetA_infer/" --e2e_pgnet_polygon=True
python3 tools/infer/predict_e2e.py --e2e_algorithm="PGNet" --image_dir="./doc/imgs_en/img623.jpg" --e2e_model_dir="./inference/e2e_server_pgnetA_infer/" --e2e_pgnet_valid_set="totaltext"
# 预测image_dir指定的图像集合
python3 tools/infer/predict_e2e.py --e2e_algorithm="PGNet" --image_dir="./doc/imgs_en/" --e2e_model_dir="./inference/e2e_server_pgnetA_infer/" --e2e_pgnet_polygon=True
python3 tools/infer/predict_e2e.py --e2e_algorithm="PGNet" --image_dir="./doc/imgs_en/" --e2e_model_dir="./inference/e2e_server_pgnetA_infer/" --e2e_pgnet_valid_set="totaltext"
# 如果想使用CPU进行预测,需设置use_gpu参数为False
python3 tools/infer/predict_e2e.py --e2e_algorithm="PGNet" --image_dir="./doc/imgs_en/img623.jpg" --e2e_model_dir="./inference/e2e_server_pgnetA_infer/" --e2e_pgnet_polygon=True --use_gpu=False
python3 tools/infer/predict_e2e.py --e2e_algorithm="PGNet" --image_dir="./doc/imgs_en/img623.jpg" --e2e_model_dir="./inference/e2e_server_pgnetA_infer/" --e2e_pgnet_valid_set="totaltext" --use_gpu=False
```
### 可视化结果
可视化文本检测结果默认保存到./inference_results文件夹里面,结果文件的名称前缀为'e2e_res'。结果示例如下:
......@@ -167,9 +167,9 @@ python3 tools/infer_e2e.py -c configs/e2e/e2e_r50_vd_pg.yml -o Global.infer_img=
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/pgnet/en_server_pgnetA.tar && tar xf en_server_pgnetA.tar
python3 tools/export_model.py -c configs/e2e/e2e_r50_vd_pg.yml -o Global.pretrained_model=./en_server_pgnetA/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/e2e
```
**PGNet端到端模型推理,需要设置参数`--e2e_algorithm="PGNet"`**,可以执行如下命令:
**PGNet端到端模型推理,需要设置参数`--e2e_algorithm="PGNet"` and `--e2e_pgnet_valid_set="partvgg"`**,可以执行如下命令:
```
python3 tools/infer/predict_e2e.py --e2e_algorithm="PGNet" --image_dir="./doc/imgs_en/img_10.jpg" --e2e_model_dir="./inference/e2e/" --e2e_pgnet_polygon=False
python3 tools/infer/predict_e2e.py --e2e_algorithm="PGNet" --image_dir="./doc/imgs_en/img_10.jpg" --e2e_model_dir="./inference/e2e/" --e2e_pgnet_valid_set="partvgg" --e2e_pgnet_valid_set="totaltext"
```
可视化文本检测结果默认保存到`./inference_results`文件夹里面,结果文件的名称前缀为'e2e_res'。结果示例如下:
......@@ -178,9 +178,9 @@ python3 tools/infer/predict_e2e.py --e2e_algorithm="PGNet" --image_dir="./doc/im
#### (2). 弯曲文本检测模型(Total-Text)
对于弯曲文本样例
**PGNet端到端模型推理,需要设置参数`--e2e_algorithm="PGNet"`,同时,还需要增加参数`--e2e_pgnet_polygon=True`,**可以执行如下命令:
**PGNet端到端模型推理,需要设置参数`--e2e_algorithm="PGNet"`,同时,还需要增加参数`--e2e_pgnet_valid_set="totaltext"`,**可以执行如下命令:
```
python3 tools/infer/predict_e2e.py --e2e_algorithm="PGNet" --image_dir="./doc/imgs_en/img623.jpg" --e2e_model_dir="./inference/e2e/" --e2e_pgnet_polygon=True
python3 tools/infer/predict_e2e.py --e2e_algorithm="PGNet" --image_dir="./doc/imgs_en/img623.jpg" --e2e_model_dir="./inference/e2e/" --e2e_pgnet_valid_set="totaltext"
```
可视化文本端到端结果默认保存到`./inference_results`文件夹里面,结果文件的名称前缀为'e2e_res'。结果示例如下:
......
......@@ -12,30 +12,37 @@ PaddleOCR希望可以通过AI的力量助力任何一位有梦想的开发者实
## 1. 社区贡献
### 1.1 为PaddleOCR新增功能
### 1.1 基于PaddleOCR的社区贡献
- 【最新】 [FastOCRLabel](https://gitee.com/BaoJianQiang/FastOCRLabel):完整的C#版本标注工具 (@ [包建强](https://gitee.com/BaoJianQiang) )
#### 1.1.1 通用工具
- [DangoOCR离线版](https://github.com/PantsuDango/DangoOCR):通用型桌面级即时翻译工具 (@ [PantsuDango](https://github.com/PantsuDango))
- [scr2txt](https://github.com/lstwzd/scr2txt):截屏转文字工具 (@ [lstwzd](https://github.com/lstwzd))
- [AI Studio项目](https://aistudio.baidu.com/aistudio/projectdetail/1054614?channelType=0&channel=0):英文视频自动生成字幕( @ [叶月水狐](https://aistudio.baidu.com/aistudio/personalcenter/thirdview/322052))
#### 1.1.2 垂类场景工具
- [id_card_ocr](https://github.com/baseli/id_card_ocr):身份证复印件识别(@ [baseli](https://github.com/baseli))
- [Paddle_Table_Image_Reader](https://github.com/thunder95/Paddle_Table_Image_Reader):能看懂表格图片的数据助手(@ [thunder95](https://github.com/thunder95]))
#### 1.1.3 前后处理
- [paddleOCRCorrectOutputs](https://github.com/yuranusduke/paddleOCRCorrectOutputs):获取OCR识别结果的key-value(@ [yuranusduke](https://github.com/yuranusduke))
### 1.2 为PaddleOCR新增功能
- 非常感谢 [authorfu](https://github.com/authorfu) 贡献Android([#340](https://github.com/PaddlePaddle/PaddleOCR/pull/340))和[xiadeye](https://github.com/xiadeye) 贡献IOS的demo代码([#325](https://github.com/PaddlePaddle/PaddleOCR/pull/325))
- 非常感谢 [tangmq](https://gitee.com/tangmq) 给PaddleOCR增加Docker化部署服务,支持快速发布可调用的Restful API服务([#507](https://github.com/PaddlePaddle/PaddleOCR/pull/507))。
- 非常感谢 [lijinhan](https://github.com/lijinhan) 给PaddleOCR增加java SpringBoot 调用OCR Hubserving接口完成对OCR服务化部署的使用([#1027](https://github.com/PaddlePaddle/PaddleOCR/pull/1027))。
- 非常感谢 [Evezerest](https://github.com/Evezerest)[ninetailskim](https://github.com/ninetailskim)[edencfc](https://github.com/edencfc)[BeyondYourself](https://github.com/BeyondYourself)[1084667371](https://github.com/1084667371) 贡献了[PPOCRLabel](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.3/PPOCRLabel/README_ch.md) 的完整代码。
### 1.2 基于PaddleOCR的社区贡献
- 【最新】完整的C#版本标注工具 [FastOCRLabel](https://gitee.com/BaoJianQiang/FastOCRLabel) (@ [包建强](https://gitee.com/BaoJianQiang) )
- 通用型桌面级即时翻译工具 [DangoOCR离线版](https://github.com/PantsuDango/DangoOCR) (@ [PantsuDango](https://github.com/PantsuDango))
- 获取OCR识别结果的key-value [paddleOCRCorrectOutputs](https://github.com/yuranusduke/paddleOCRCorrectOutputs) (@ [yuranusduke](https://github.com/yuranusduke))
- 截屏转文字工具 [scr2txt](https://github.com/lstwzd/scr2txt) (@ [lstwzd](https://github.com/lstwzd))
- 身份证复印件识别 [id_card_ocr](https://github.com/baseli/id_card_ocr)(@ [baseli](https://github.com/baseli))
- 能看懂表格图片的数据助手:[Paddle_Table_Image_Reader](https://github.com/thunder95/Paddle_Table_Image_Reader) (@ [thunder95][https://github.com/thunder95])
- 英文视频自动生成字幕 [AI Studio项目](https://aistudio.baidu.com/aistudio/projectdetail/1054614?channelType=0&channel=0)( @ [叶月水狐](https://aistudio.baidu.com/aistudio/personalcenter/thirdview/322052))
### 1.3 代码与文档优化
- 非常感谢 [zhangxin](https://github.com/ZhangXinNan)([Blog](https://blog.csdn.net/sdlypyzq)) 贡献新的可视化方式、添加.gitgnore、处理手动设置PYTHONPATH环境变量的问题([#210](https://github.com/PaddlePaddle/PaddleOCR/pull/210))。
- 非常感谢 [lyl120117](https://github.com/lyl120117) 贡献打印网络结构的代码([#304](https://github.com/PaddlePaddle/PaddleOCR/pull/304))。
- 非常感谢 [BeyondYourself](https://github.com/BeyondYourself) 给PaddleOCR提了很多非常棒的建议,并简化了PaddleOCR的部分代码风格([so many commits)](https://github.com/PaddlePaddle/PaddleOCR/commits?author=BeyondYourself)
- 非常感谢 [Khanh Tran](https://github.com/xxxpsyduck)[Karl Horky](https://github.com/karlhorky) 贡献修改英文文档。
### 1.4 多语言语料
......
......@@ -59,13 +59,13 @@ After decompression, there should be the following file structure:
### Single image or image set prediction
```bash
# Prediction single image specified by image_dir
python3 tools/infer/predict_e2e.py --e2e_algorithm="PGNet" --image_dir="./doc/imgs_en/img623.jpg" --e2e_model_dir="./inference/e2e_server_pgnetA_infer/" --e2e_pgnet_polygon=True
python3 tools/infer/predict_e2e.py --e2e_algorithm="PGNet" --image_dir="./doc/imgs_en/img623.jpg" --e2e_model_dir="./inference/e2e_server_pgnetA_infer/" --e2e_pgnet_valid_set="totaltext"
# Prediction the collection of images specified by image_dir
python3 tools/infer/predict_e2e.py --e2e_algorithm="PGNet" --image_dir="./doc/imgs_en/" --e2e_model_dir="./inference/e2e_server_pgnetA_infer/" --e2e_pgnet_polygon=True
python3 tools/infer/predict_e2e.py --e2e_algorithm="PGNet" --image_dir="./doc/imgs_en/" --e2e_model_dir="./inference/e2e_server_pgnetA_infer/" --e2e_pgnet_valid_set="totaltext"
# If you want to use CPU for prediction, you need to set use_gpu parameter is false
python3 tools/infer/predict_e2e.py --e2e_algorithm="PGNet" --image_dir="./doc/imgs_en/img623.jpg" --e2e_model_dir="./inference/e2e_server_pgnetA_infer/" --e2e_pgnet_polygon=True --use_gpu=False
python3 tools/infer/predict_e2e.py --e2e_algorithm="PGNet" --image_dir="./doc/imgs_en/img623.jpg" --e2e_model_dir="./inference/e2e_server_pgnetA_infer/" --use_gpu=False --e2e_pgnet_valid_set="totaltext"
```
### Visualization results
The visualized end-to-end results are saved to the `./inference_results` folder by default, and the name of the result file is prefixed with 'e2e_res'. Examples of results are as follows:
......@@ -166,9 +166,9 @@ First, convert the model saved in the PGNet end-to-end training process into an
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/pgnet/en_server_pgnetA.tar && tar xf en_server_pgnetA.tar
python3 tools/export_model.py -c configs/e2e/e2e_r50_vd_pg.yml -o Global.pretrained_model=./en_server_pgnetA/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/e2e
```
**For PGNet quadrangle end-to-end model inference, you need to set the parameter `--e2e_algorithm="PGNet"`**, run the following command:
**For PGNet quadrangle end-to-end model inference, you need to set the parameter `--e2e_algorithm="PGNet"` and `--e2e_pgnet_valid_set="partvgg"`**, run the following command:
```
python3 tools/infer/predict_e2e.py --e2e_algorithm="PGNet" --image_dir="./doc/imgs_en/img_10.jpg" --e2e_model_dir="./inference/e2e/" --e2e_pgnet_polygon=False
python3 tools/infer/predict_e2e.py --e2e_algorithm="PGNet" --image_dir="./doc/imgs_en/img_10.jpg" --e2e_model_dir="./inference/e2e/" --e2e_pgnet_valid_set="partvgg"
```
The visualized text detection results are saved to the `./inference_results` folder by default, and the name of the result file is prefixed with 'e2e_res'. Examples of results are as follows:
......@@ -176,9 +176,9 @@ The visualized text detection results are saved to the `./inference_results` fol
#### (2). Curved text detection model (Total-Text)
For the curved text example, we use the same model as the quadrilateral
**For PGNet end-to-end curved text detection model inference, you need to set the parameter `--e2e_algorithm="PGNet"` and `--e2e_pgnet_polygon=True`**, run the following command:
**For PGNet end-to-end curved text detection model inference, you need to set the parameter `--e2e_algorithm="PGNet"` and `--e2e_pgnet_valid_set="totaltext"`**, run the following command:
```
python3 tools/infer/predict_e2e.py --e2e_algorithm="PGNet" --image_dir="./doc/imgs_en/img623.jpg" --e2e_model_dir="./inference/e2e/" --e2e_pgnet_polygon=True
python3 tools/infer/predict_e2e.py --e2e_algorithm="PGNet" --image_dir="./doc/imgs_en/img623.jpg" --e2e_model_dir="./inference/e2e/" --e2e_pgnet_valid_set="totaltext"
```
The visualized text detection results are saved to the `./inference_results` folder by default, and the name of the result file is prefixed with 'e2e_res'. Examples of results are as follows:
......
doc/joinus.PNG

192.6 KB | W: | H:

doc/joinus.PNG

190.2 KB | W: | H:

doc/joinus.PNG
doc/joinus.PNG
doc/joinus.PNG
doc/joinus.PNG
  • 2-up
  • Swipe
  • Onion skin
# 视觉问答(VQA)
VQA主要特性如下:
- 集成[LayoutXLM](https://arxiv.org/pdf/2104.08836.pdf)模型以及PP-OCR预测引擎。
- 支持基于多模态方法的语义实体识别 (Semantic Entity Recognition, SER) 以及关系抽取 (Relation Extraction, RE) 任务。基于 SER 任务,可以完成对图像中的文本识别与分类;基于 RE 任务,可以完成对图象中的文本内容的关系提取(比如判断问题对)
- 支持SER任务与OCR引擎联合的端到端系统预测与评估。
- 支持SER任务和RE任务的自定义训练
本项目是 [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/pdf/2104.08836.pdf) 在 Paddle 2.2上的开源实现,
包含了在 [XFUND数据集](https://github.com/doc-analysis/XFUND) 上的微调代码。
## 1. 效果演示
**注意:** 测试图片来源于XFUN数据集。
### 1.1 SER
<div align="center">
<img src="./images/result_ser/zh_val_0_ser.jpg" width = "600" />
</div>
<div align="center">
<img src="./images/result_ser/zh_val_42_ser.jpg" width = "600" />
</div>
其中不同颜色的框表示不同的类别,对于XFUN数据集,有`QUESTION`, `ANSWER`, `HEADER` 3种类别,在OCR检测框的左上方也标出了对应的类别和OCR识别结果。
### 1.2 RE
* Coming soon!
## 2. 安装
### 2.1 安装依赖
- **(1) 安装PaddlePaddle**
```bash
pip3 install --upgrade pip
# GPU安装
python3 -m pip install paddlepaddle-gpu==2.2 -i https://mirror.baidu.com/pypi/simple
# CPU安装
python3 -m pip install paddlepaddle==2.2 -i https://mirror.baidu.com/pypi/simple
```
更多需求,请参照[安装文档](https://www.paddlepaddle.org.cn/install/quick)中的说明进行操作。
### 2.2 安装PaddleOCR(包含 PP-OCR 和 VQA )
- **(1)pip快速安装PaddleOCR whl包(仅预测)**
```bash
pip install "paddleocr>=2.2" # 推荐使用2.2+版本
```
- **(2)下载VQA源码(预测+训练)**
```bash
【推荐】git clone https://github.com/PaddlePaddle/PaddleOCR
# 如果因为网络问题无法pull成功,也可选择使用码云上的托管:
git clone https://gitee.com/paddlepaddle/PaddleOCR
# 注:码云托管代码可能无法实时同步本github项目更新,存在3~5天延时,请优先使用推荐方式。
```
- **(3)安装PaddleNLP**
```bash
# 需要使用PaddleNLP最新的代码版本进行安装
git clone https://github.com/PaddlePaddle/PaddleNLP -b develop
cd PaddleNLP
pip install -e .
```
- **(4)安装VQA的`requirements`**
```bash
pip install -r requirements.txt
```
## 3. 使用
### 3.1 数据和预训练模型准备
处理好的XFUN中文数据集下载地址:[https://paddleocr.bj.bcebos.com/dataset/XFUND.tar](https://paddleocr.bj.bcebos.com/dataset/XFUND.tar)
下载并解压该数据集,解压后将数据集放置在当前目录下。
```shell
wget https://paddleocr.bj.bcebos.com/dataset/XFUND.tar
```
如果希望转换XFUN中其他语言的数据集,可以参考[XFUN数据转换脚本](helper/trans_xfun_data.py)
如果希望直接体验预测过程,可以下载我们提供的SER预训练模型,跳过训练过程,直接预测即可。
* SER任务预训练模型下载链接:[链接](https://paddleocr.bj.bcebos.com/pplayout/PP-Layout_v1.0_ser_pretrained.tar)
* RE任务预训练模型下载链接:coming soon!
### 3.2 SER任务
* 启动训练
```shell
python train_ser.py \
--model_name_or_path "layoutxlm-base-uncased" \
--train_data_dir "XFUND/zh_train/image" \
--train_label_path "XFUND/zh_train/xfun_normalize_train.json" \
--eval_data_dir "XFUND/zh_val/image" \
--eval_label_path "XFUND/zh_val/xfun_normalize_val.json" \
--num_train_epochs 200 \
--eval_steps 10 \
--save_steps 500 \
--output_dir "./output/ser/" \
--learning_rate 5e-5 \
--warmup_steps 50 \
--evaluate_during_training \
--seed 2048
```
最终会打印出`precision`, `recall`, `f1`等指标,如下所示。
```
best metrics: {'loss': 1.066644651549203, 'precision': 0.8770182068017863, 'recall': 0.9361936193619362, 'f1': 0.9056402979780063}
```
模型和训练日志会保存在`./output/ser/`文件夹中。
* 使用评估集合中提供的OCR识别结果进行预测
```shell
export CUDA_VISIBLE_DEVICES=0
python3.7 infer_ser.py \
--model_name_or_path "./PP-Layout_v1.0_ser_pretrained/" \
--output_dir "output_res/" \
--infer_imgs "XFUND/zh_val/image/" \
--ocr_json_path "XFUND/zh_val/xfun_normalize_val.json"
```
最终会在`output_res`目录下保存预测结果可视化图像以及预测结果文本文件,文件名为`infer_results.txt`
* 使用`OCR引擎 + SER`串联结果
```shell
export CUDA_VISIBLE_DEVICES=0
python3.7 infer_ser_e2e.py \
--model_name_or_path "./output/PP-Layout_v1.0_ser_pretrained/" \
--max_seq_length 512 \
--output_dir "output_res_e2e/"
```
*`OCR引擎 + SER`预测系统进行端到端评估
```shell
export CUDA_VISIBLE_DEVICES=0
python helper/eval_with_label_end2end.py --gt_json_path XFUND/zh_val/xfun_normalize_val.json --pred_json_path output_res/infer_results.txt
```
3.3 RE任务
coming soon!
## 参考链接
- LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding, https://arxiv.org/pdf/2104.08836.pdf
- microsoft/unilm/layoutxlm, https://github.com/microsoft/unilm/tree/master/layoutxlm
- XFUND dataset, https://github.com/doc-analysis/XFUND
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import re
import sys
# import Polygon
import shapely
from shapely.geometry import Polygon
import numpy as np
from collections import defaultdict
import operator
import editdistance
import argparse
import json
import copy
def parse_ser_results_fp(fp, fp_type="gt", ignore_background=True):
# img/zh_val_0.jpg {
# "height": 3508,
# "width": 2480,
# "ocr_info": [
# {"text": "Maribyrnong", "label": "other", "bbox": [1958, 144, 2184, 198]},
# {"text": "CITYCOUNCIL", "label": "other", "bbox": [2052, 183, 2171, 214]},
# ]
assert fp_type in ["gt", "pred"]
key = "label" if fp_type == "gt" else "pred"
res_dict = dict()
with open(fp, "r") as fin:
lines = fin.readlines()
for _, line in enumerate(lines):
img_path, info = line.strip().split("\t")
# get key
image_name = os.path.basename(img_path)
res_dict[image_name] = []
# get infos
json_info = json.loads(info)
for single_ocr_info in json_info["ocr_info"]:
label = single_ocr_info[key].upper()
if label in ["O", "OTHERS", "OTHER"]:
label = "O"
if ignore_background and label == "O":
continue
single_ocr_info["label"] = label
res_dict[image_name].append(copy.deepcopy(single_ocr_info))
return res_dict
def polygon_from_str(polygon_points):
"""
Create a shapely polygon object from gt or dt line.
"""
polygon_points = np.array(polygon_points).reshape(4, 2)
polygon = Polygon(polygon_points).convex_hull
return polygon
def polygon_iou(poly1, poly2):
"""
Intersection over union between two shapely polygons.
"""
if not poly1.intersects(
poly2): # this test is fast and can accelerate calculation
iou = 0
else:
try:
inter_area = poly1.intersection(poly2).area
union_area = poly1.area + poly2.area - inter_area
iou = float(inter_area) / union_area
except shapely.geos.TopologicalError:
# except Exception as e:
# print(e)
print('shapely.geos.TopologicalError occured, iou set to 0')
iou = 0
return iou
def ed(args, str1, str2):
if args.ignore_space:
str1 = str1.replace(" ", "")
str2 = str2.replace(" ", "")
if args.ignore_case:
str1 = str1.lower()
str2 = str2.lower()
return editdistance.eval(str1, str2)
def convert_bbox_to_polygon(bbox):
"""
bbox : [x1, y1, x2, y2]
output: [[x1, y1], [x2, y2], [x3, y3], [x4, y4]]
"""
xmin, ymin, xmax, ymax = bbox
poly = [[xmin, ymin], [xmax, ymin], [xmax, ymax], [xmin, ymax]]
return poly
def eval_e2e(args):
# gt
gt_results = parse_ser_results_fp(args.gt_json_path, "gt",
args.ignore_background)
# pred
dt_results = parse_ser_results_fp(args.pred_json_path, "pred",
args.ignore_background)
assert set(gt_results.keys()) == set(dt_results.keys())
iou_thresh = args.iou_thres
num_gt_chars = 0
gt_count = 0
dt_count = 0
hit = 0
ed_sum = 0
for img_name in gt_results:
gt_info = gt_results[img_name]
gt_count += len(gt_info)
dt_info = dt_results[img_name]
dt_count += len(dt_info)
dt_match = [False] * len(dt_info)
gt_match = [False] * len(gt_info)
all_ious = defaultdict(tuple)
# gt: {text, label, bbox or poly}
for index_gt, gt in enumerate(gt_info):
if "poly" not in gt:
gt["poly"] = convert_bbox_to_polygon(gt["bbox"])
gt_poly = polygon_from_str(gt["poly"])
for index_dt, dt in enumerate(dt_info):
if "poly" not in dt:
dt["poly"] = convert_bbox_to_polygon(dt["bbox"])
dt_poly = polygon_from_str(dt["poly"])
iou = polygon_iou(dt_poly, gt_poly)
if iou >= iou_thresh:
all_ious[(index_gt, index_dt)] = iou
sorted_ious = sorted(
all_ious.items(), key=operator.itemgetter(1), reverse=True)
sorted_gt_dt_pairs = [item[0] for item in sorted_ious]
# matched gt and dt
for gt_dt_pair in sorted_gt_dt_pairs:
index_gt, index_dt = gt_dt_pair
if gt_match[index_gt] == False and dt_match[index_dt] == False:
gt_match[index_gt] = True
dt_match[index_dt] = True
# ocr rec results
gt_text = gt_info[index_gt]["text"]
dt_text = dt_info[index_dt]["text"]
# ser results
gt_label = gt_info[index_gt]["label"]
dt_label = dt_info[index_dt]["pred"]
if True: # ignore_masks[index_gt] == '0':
ed_sum += ed(args, gt_text, dt_text)
num_gt_chars += len(gt_text)
if gt_text == dt_text:
if args.ignore_ser_prediction or gt_label == dt_label:
hit += 1
# unmatched dt
for tindex, dt_match_flag in enumerate(dt_match):
if dt_match_flag == False:
dt_text = dt_info[tindex]["text"]
gt_text = ""
ed_sum += ed(args, dt_text, gt_text)
# unmatched gt
for tindex, gt_match_flag in enumerate(gt_match):
if gt_match_flag == False:
dt_text = ""
gt_text = gt_info[tindex]["text"]
ed_sum += ed(args, gt_text, dt_text)
num_gt_chars += len(gt_text)
eps = 1e-9
print("config: ", args)
print('hit, dt_count, gt_count', hit, dt_count, gt_count)
precision = hit / (dt_count + eps)
recall = hit / (gt_count + eps)
fmeasure = 2.0 * precision * recall / (precision + recall + eps)
avg_edit_dist_img = ed_sum / len(gt_results)
avg_edit_dist_field = ed_sum / (gt_count + eps)
character_acc = 1 - ed_sum / (num_gt_chars + eps)
print('character_acc: %.2f' % (character_acc * 100) + "%")
print('avg_edit_dist_field: %.2f' % (avg_edit_dist_field))
print('avg_edit_dist_img: %.2f' % (avg_edit_dist_img))
print('precision: %.2f' % (precision * 100) + "%")
print('recall: %.2f' % (recall * 100) + "%")
print('fmeasure: %.2f' % (fmeasure * 100) + "%")
return
def parse_args():
"""
"""
def str2bool(v):
return v.lower() in ("true", "t", "1")
parser = argparse.ArgumentParser()
## Required parameters
parser.add_argument(
"--gt_json_path",
default=None,
type=str,
required=True, )
parser.add_argument(
"--pred_json_path",
default=None,
type=str,
required=True, )
parser.add_argument("--iou_thres", default=0.5, type=float)
parser.add_argument(
"--ignore_case",
default=False,
type=str2bool,
help="whether to do lower case for the strs")
parser.add_argument(
"--ignore_space",
default=True,
type=str2bool,
help="whether to ignore space")
parser.add_argument(
"--ignore_background",
default=True,
type=str2bool,
help="whether to ignore other label")
parser.add_argument(
"--ignore_ser_prediction",
default=False,
type=str2bool,
help="whether to ignore ocr pred results")
args = parser.parse_args()
return args
if __name__ == '__main__':
args = parse_args()
eval_e2e(args)
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
def transfer_xfun_data(json_path=None, output_file=None):
with open(json_path, "r") as fin:
lines = fin.readlines()
json_info = json.loads(lines[0])
documents = json_info["documents"]
label_info = {}
with open(output_file, "w") as fout:
for idx, document in enumerate(documents):
img_info = document["img"]
document = document["document"]
image_path = img_info["fname"]
label_info["height"] = img_info["height"]
label_info["width"] = img_info["width"]
label_info["ocr_info"] = []
for doc in document:
label_info["ocr_info"].append({
"text": doc["text"],
"label": doc["label"],
"bbox": doc["box"],
"id": doc["id"],
"linking": doc["linking"],
"words": doc["words"]
})
fout.write(image_path + "\t" + json.dumps(
label_info, ensure_ascii=False) + "\n")
print("===ok====")
transfer_xfun_data("./xfun/zh.val.json", "./xfun_normalize_val.json")
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import json
import cv2
import numpy as np
from copy import deepcopy
import paddle
# relative reference
from utils import parse_args, get_image_file_list, draw_ser_results, get_bio_label_maps
from paddlenlp.transformers import LayoutXLMModel, LayoutXLMTokenizer, LayoutXLMForTokenClassification
def pad_sentences(tokenizer,
encoded_inputs,
max_seq_len=512,
pad_to_max_seq_len=True,
return_attention_mask=True,
return_token_type_ids=True,
return_overflowing_tokens=False,
return_special_tokens_mask=False):
# Padding with larger size, reshape is carried out
max_seq_len = (
len(encoded_inputs["input_ids"]) // max_seq_len + 1) * max_seq_len
needs_to_be_padded = pad_to_max_seq_len and \
max_seq_len and len(encoded_inputs["input_ids"]) < max_seq_len
if needs_to_be_padded:
difference = max_seq_len - len(encoded_inputs["input_ids"])
if tokenizer.padding_side == 'right':
if return_attention_mask:
encoded_inputs["attention_mask"] = [1] * len(encoded_inputs[
"input_ids"]) + [0] * difference
if return_token_type_ids:
encoded_inputs["token_type_ids"] = (
encoded_inputs["token_type_ids"] +
[tokenizer.pad_token_type_id] * difference)
if return_special_tokens_mask:
encoded_inputs["special_tokens_mask"] = encoded_inputs[
"special_tokens_mask"] + [1] * difference
encoded_inputs["input_ids"] = encoded_inputs[
"input_ids"] + [tokenizer.pad_token_id] * difference
encoded_inputs["bbox"] = encoded_inputs["bbox"] + [[0, 0, 0, 0]
] * difference
else:
assert False, f"padding_side of tokenizer just supports [\"right\"] but got {tokenizer.padding_side}"
else:
if return_attention_mask:
encoded_inputs["attention_mask"] = [1] * len(encoded_inputs[
"input_ids"])
return encoded_inputs
def split_page(encoded_inputs, max_seq_len=512):
"""
truncate is often used in training process
"""
for key in encoded_inputs:
encoded_inputs[key] = paddle.to_tensor(encoded_inputs[key])
if encoded_inputs[key].ndim <= 1: # for input_ids, att_mask and so on
encoded_inputs[key] = encoded_inputs[key].reshape([-1, max_seq_len])
else: # for bbox
encoded_inputs[key] = encoded_inputs[key].reshape(
[-1, max_seq_len, 4])
return encoded_inputs
def preprocess(
tokenizer,
ori_img,
ocr_info,
img_size=(224, 224),
pad_token_label_id=-100,
max_seq_len=512,
add_special_ids=False,
return_attention_mask=True, ):
ocr_info = deepcopy(ocr_info)
height = ori_img.shape[0]
width = ori_img.shape[1]
img = cv2.resize(ori_img,
(224, 224)).transpose([2, 0, 1]).astype(np.float32)
segment_offset_id = []
words_list = []
bbox_list = []
input_ids_list = []
token_type_ids_list = []
for info in ocr_info:
# x1, y1, x2, y2
bbox = info["bbox"]
bbox[0] = int(bbox[0] * 1000.0 / width)
bbox[2] = int(bbox[2] * 1000.0 / width)
bbox[1] = int(bbox[1] * 1000.0 / height)
bbox[3] = int(bbox[3] * 1000.0 / height)
text = info["text"]
encode_res = tokenizer.encode(
text, pad_to_max_seq_len=False, return_attention_mask=True)
if not add_special_ids:
# TODO: use tok.all_special_ids to remove
encode_res["input_ids"] = encode_res["input_ids"][1:-1]
encode_res["token_type_ids"] = encode_res["token_type_ids"][1:-1]
encode_res["attention_mask"] = encode_res["attention_mask"][1:-1]
input_ids_list.extend(encode_res["input_ids"])
token_type_ids_list.extend(encode_res["token_type_ids"])
bbox_list.extend([bbox] * len(encode_res["input_ids"]))
words_list.append(text)
segment_offset_id.append(len(input_ids_list))
encoded_inputs = {
"input_ids": input_ids_list,
"token_type_ids": token_type_ids_list,
"bbox": bbox_list,
"attention_mask": [1] * len(input_ids_list),
}
encoded_inputs = pad_sentences(
tokenizer,
encoded_inputs,
max_seq_len=max_seq_len,
return_attention_mask=return_attention_mask)
encoded_inputs = split_page(encoded_inputs)
fake_bs = encoded_inputs["input_ids"].shape[0]
encoded_inputs["image"] = paddle.to_tensor(img).unsqueeze(0).expand(
[fake_bs] + list(img.shape))
encoded_inputs["segment_offset_id"] = segment_offset_id
return encoded_inputs
def postprocess(attention_mask, preds, label_map_path):
if isinstance(preds, paddle.Tensor):
preds = preds.numpy()
preds = np.argmax(preds, axis=2)
_, label_map = get_bio_label_maps(label_map_path)
preds_list = [[] for _ in range(preds.shape[0])]
# keep batch info
for i in range(preds.shape[0]):
for j in range(preds.shape[1]):
if attention_mask[i][j] == 1:
preds_list[i].append(label_map[preds[i][j]])
return preds_list
def merge_preds_list_with_ocr_info(label_map_path, ocr_info, segment_offset_id,
preds_list):
# must ensure the preds_list is generated from the same image
preds = [p for pred in preds_list for p in pred]
label2id_map, _ = get_bio_label_maps(label_map_path)
for key in label2id_map:
if key.startswith("I-"):
label2id_map[key] = label2id_map["B" + key[1:]]
id2label_map = dict()
for key in label2id_map:
val = label2id_map[key]
if key == "O":
id2label_map[val] = key
if key.startswith("B-") or key.startswith("I-"):
id2label_map[val] = key[2:]
else:
id2label_map[val] = key
for idx in range(len(segment_offset_id)):
if idx == 0:
start_id = 0
else:
start_id = segment_offset_id[idx - 1]
end_id = segment_offset_id[idx]
curr_pred = preds[start_id:end_id]
curr_pred = [label2id_map[p] for p in curr_pred]
if len(curr_pred) <= 0:
pred_id = 0
else:
counts = np.bincount(curr_pred)
pred_id = np.argmax(counts)
ocr_info[idx]["pred_id"] = int(pred_id)
ocr_info[idx]["pred"] = id2label_map[pred_id]
return ocr_info
@paddle.no_grad()
def infer(args):
os.makedirs(args.output_dir, exist_ok=True)
# init token and model
tokenizer = LayoutXLMTokenizer.from_pretrained(args.model_name_or_path)
# model = LayoutXLMModel.from_pretrained(args.model_name_or_path)
model = LayoutXLMForTokenClassification.from_pretrained(
args.model_name_or_path)
model.eval()
# load ocr results json
ocr_results = dict()
with open(args.ocr_json_path, "r") as fin:
lines = fin.readlines()
for line in lines:
img_name, json_info = line.split("\t")
ocr_results[os.path.basename(img_name)] = json.loads(json_info)
# get infer img list
infer_imgs = get_image_file_list(args.infer_imgs)
# loop for infer
with open(os.path.join(args.output_dir, "infer_results.txt"), "w") as fout:
for idx, img_path in enumerate(infer_imgs):
print("process: [{}/{}]".format(idx, len(infer_imgs), img_path))
img = cv2.imread(img_path)
ocr_info = ocr_results[os.path.basename(img_path)]["ocr_info"]
inputs = preprocess(
tokenizer=tokenizer,
ori_img=img,
ocr_info=ocr_info,
max_seq_len=args.max_seq_length)
outputs = model(
input_ids=inputs["input_ids"],
bbox=inputs["bbox"],
image=inputs["image"],
token_type_ids=inputs["token_type_ids"],
attention_mask=inputs["attention_mask"])
preds = outputs[0]
preds = postprocess(inputs["attention_mask"], preds,
args.label_map_path)
ocr_info = merge_preds_list_with_ocr_info(
args.label_map_path, ocr_info, inputs["segment_offset_id"],
preds)
fout.write(img_path + "\t" + json.dumps(
{
"ocr_info": ocr_info,
}, ensure_ascii=False) + "\n")
img_res = draw_ser_results(img, ocr_info)
cv2.imwrite(
os.path.join(args.output_dir, os.path.basename(img_path)),
img_res)
return
if __name__ == "__main__":
args = parse_args()
infer(args)
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import json
import cv2
import numpy as np
from copy import deepcopy
from PIL import Image
import paddle
from paddlenlp.transformers import LayoutXLMModel, LayoutXLMTokenizer, LayoutXLMForTokenClassification
# relative reference
from utils import parse_args, get_image_file_list, draw_ser_results, get_bio_label_maps, build_ocr_engine
from utils import pad_sentences, split_page, preprocess, postprocess, merge_preds_list_with_ocr_info
def trans_poly_to_bbox(poly):
x1 = np.min([p[0] for p in poly])
x2 = np.max([p[0] for p in poly])
y1 = np.min([p[1] for p in poly])
y2 = np.max([p[1] for p in poly])
return [x1, y1, x2, y2]
def parse_ocr_info_for_ser(ocr_result):
ocr_info = []
for res in ocr_result:
ocr_info.append({
"text": res[1][0],
"bbox": trans_poly_to_bbox(res[0]),
"poly": res[0],
})
return ocr_info
@paddle.no_grad()
def infer(args):
os.makedirs(args.output_dir, exist_ok=True)
# init token and model
tokenizer = LayoutXLMTokenizer.from_pretrained(args.model_name_or_path)
model = LayoutXLMForTokenClassification.from_pretrained(
args.model_name_or_path)
model.eval()
label2id_map, id2label_map = get_bio_label_maps(args.label_map_path)
label2id_map_for_draw = dict()
for key in label2id_map:
if key.startswith("I-"):
label2id_map_for_draw[key] = label2id_map["B" + key[1:]]
else:
label2id_map_for_draw[key] = label2id_map[key]
# get infer img list
infer_imgs = get_image_file_list(args.infer_imgs)
ocr_engine = build_ocr_engine(args.ocr_rec_model_dir,
args.ocr_det_model_dir)
# loop for infer
with open(os.path.join(args.output_dir, "infer_results.txt"), "w") as fout:
for idx, img_path in enumerate(infer_imgs):
print("process: [{}/{}]".format(idx, len(infer_imgs), img_path))
img = cv2.imread(img_path)
ocr_result = ocr_engine.ocr(img_path, cls=False)
ocr_info = parse_ocr_info_for_ser(ocr_result)
inputs = preprocess(
tokenizer=tokenizer,
ori_img=img,
ocr_info=ocr_info,
max_seq_len=args.max_seq_length)
outputs = model(
input_ids=inputs["input_ids"],
bbox=inputs["bbox"],
image=inputs["image"],
token_type_ids=inputs["token_type_ids"],
attention_mask=inputs["attention_mask"])
preds = outputs[0]
preds = postprocess(inputs["attention_mask"], preds, id2label_map)
ocr_info = merge_preds_list_with_ocr_info(
ocr_info, inputs["segment_offset_id"], preds,
label2id_map_for_draw)
fout.write(img_path + "\t" + json.dumps(
{
"ocr_info": ocr_info,
}, ensure_ascii=False) + "\n")
img_res = draw_ser_results(img, ocr_info)
cv2.imwrite(
os.path.join(args.output_dir,
os.path.splitext(os.path.basename(img_path))[0] +
"_ser.jpg"), img_res)
return
if __name__ == "__main__":
args = parse_args()
infer(args)
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
import os
import random
import copy
import logging
import argparse
import paddle
import numpy as np
from seqeval.metrics import classification_report, f1_score, precision_score, recall_score
from paddlenlp.transformers import LayoutXLMModel, LayoutXLMTokenizer, LayoutXLMForTokenClassification
from xfun import XFUNDataset
from utils import parse_args
from utils import get_bio_label_maps
logger = logging.getLogger(__name__)
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
paddle.seed(args.seed)
def train(args):
os.makedirs(args.output_dir, exist_ok=True)
logging.basicConfig(
filename=os.path.join(args.output_dir, "train.log")
if paddle.distributed.get_rank() == 0 else None,
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO
if paddle.distributed.get_rank() == 0 else logging.WARN, )
ch = logging.StreamHandler()
ch.setLevel(logging.DEBUG)
logger.addHandler(ch)
label2id_map, id2label_map = get_bio_label_maps(args.label_map_path)
pad_token_label_id = paddle.nn.CrossEntropyLoss().ignore_index
# dist mode
if paddle.distributed.get_world_size() > 1:
paddle.distributed.init_parallel_env()
tokenizer = LayoutXLMTokenizer.from_pretrained(args.model_name_or_path)
base_model = LayoutXLMModel.from_pretrained(args.model_name_or_path)
model = LayoutXLMForTokenClassification(
base_model, num_classes=len(label2id_map), dropout=None)
# dist mode
if paddle.distributed.get_world_size() > 1:
model = paddle.DataParallel(model)
train_dataset = XFUNDataset(
tokenizer,
data_dir=args.train_data_dir,
label_path=args.train_label_path,
label2id_map=label2id_map,
img_size=(224, 224),
pad_token_label_id=pad_token_label_id,
contains_re=False,
add_special_ids=False,
return_attention_mask=True,
load_mode='all')
train_sampler = paddle.io.DistributedBatchSampler(
train_dataset, batch_size=args.per_gpu_train_batch_size, shuffle=True)
args.train_batch_size = args.per_gpu_train_batch_size * max(
1, paddle.distributed.get_world_size())
train_dataloader = paddle.io.DataLoader(
train_dataset,
batch_sampler=train_sampler,
num_workers=0,
use_shared_memory=True,
collate_fn=None, )
t_total = len(train_dataloader) * args.num_train_epochs
# build linear decay with warmup lr sch
lr_scheduler = paddle.optimizer.lr.PolynomialDecay(
learning_rate=args.learning_rate,
decay_steps=t_total,
end_lr=0.0,
power=1.0)
if args.warmup_steps > 0:
lr_scheduler = paddle.optimizer.lr.LinearWarmup(
lr_scheduler,
args.warmup_steps,
start_lr=0,
end_lr=args.learning_rate, )
optimizer = paddle.optimizer.AdamW(
learning_rate=lr_scheduler,
parameters=model.parameters(),
epsilon=args.adam_epsilon,
weight_decay=args.weight_decay)
# Train!
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_dataset))
logger.info(" Num Epochs = %d", args.num_train_epochs)
logger.info(" Instantaneous batch size per GPU = %d",
args.per_gpu_train_batch_size)
logger.info(
" Total train batch size (w. parallel, distributed) = %d",
args.train_batch_size * paddle.distributed.get_world_size(), )
logger.info(" Total optimization steps = %d", t_total)
global_step = 0
tr_loss = 0.0
set_seed(args)
best_metrics = None
for epoch_id in range(args.num_train_epochs):
for step, batch in enumerate(train_dataloader):
model.train()
outputs = model(**batch)
# model outputs are always tuple in ppnlp (see doc)
loss = outputs[0]
loss = loss.mean()
logger.info(
"[epoch {}/{}][iter: {}/{}] lr: {:.5f}, train loss: {:.5f}, ".
format(epoch_id, args.num_train_epochs, step,
len(train_dataloader),
lr_scheduler.get_lr(), loss.numpy()[0]))
loss.backward()
tr_loss += loss.item()
optimizer.step()
lr_scheduler.step() # Update learning rate schedule
optimizer.clear_grad()
global_step += 1
if (paddle.distributed.get_rank() == 0 and args.eval_steps > 0 and
global_step % args.eval_steps == 0):
# Log metrics
# Only evaluate when single GPU otherwise metrics may not average well
if paddle.distributed.get_rank(
) == 0 and args.evaluate_during_training:
results, _ = evaluate(
args,
model,
tokenizer,
label2id_map,
id2label_map,
pad_token_label_id, )
if best_metrics is None or results["f1"] >= best_metrics[
"f1"]:
best_metrics = copy.deepcopy(results)
output_dir = os.path.join(args.output_dir, "best_model")
os.makedirs(output_dir, exist_ok=True)
if paddle.distributed.get_rank() == 0:
model.save_pretrained(output_dir)
tokenizer.save_pretrained(output_dir)
paddle.save(
args,
os.path.join(output_dir, "training_args.bin"))
logger.info("Saving model checkpoint to %s",
output_dir)
logger.info("[epoch {}/{}][iter: {}/{}] results: {}".format(
epoch_id, args.num_train_epochs, step,
len(train_dataloader), results))
if best_metrics is not None:
logger.info("best metrics: {}".format(best_metrics))
if paddle.distributed.get_rank(
) == 0 and args.save_steps > 0 and global_step % args.save_steps == 0:
# Save model checkpoint
output_dir = os.path.join(args.output_dir,
"checkpoint-{}".format(global_step))
os.makedirs(output_dir, exist_ok=True)
if paddle.distributed.get_rank() == 0:
model.save_pretrained(output_dir)
tokenizer.save_pretrained(output_dir)
paddle.save(args,
os.path.join(output_dir, "training_args.bin"))
logger.info("Saving model checkpoint to %s", output_dir)
return global_step, tr_loss / global_step
def evaluate(args,
model,
tokenizer,
label2id_map,
id2label_map,
pad_token_label_id,
prefix=""):
eval_dataset = XFUNDataset(
tokenizer,
data_dir=args.eval_data_dir,
label_path=args.eval_label_path,
label2id_map=label2id_map,
img_size=(224, 224),
pad_token_label_id=pad_token_label_id,
contains_re=False,
add_special_ids=False,
return_attention_mask=True,
load_mode='all')
args.eval_batch_size = args.per_gpu_eval_batch_size * max(
1, paddle.distributed.get_world_size())
eval_dataloader = paddle.io.DataLoader(
eval_dataset,
batch_size=args.eval_batch_size,
num_workers=0,
use_shared_memory=True,
collate_fn=None, )
# Eval!
logger.info("***** Running evaluation %s *****", prefix)
logger.info(" Num examples = %d", len(eval_dataset))
logger.info(" Batch size = %d", args.eval_batch_size)
eval_loss = 0.0
nb_eval_steps = 0
preds = None
out_label_ids = None
model.eval()
for idx, batch in enumerate(eval_dataloader):
with paddle.no_grad():
outputs = model(**batch)
tmp_eval_loss, logits = outputs[:2]
tmp_eval_loss = tmp_eval_loss.mean()
if paddle.distributed.get_rank() == 0:
logger.info("[Eval]process: {}/{}, loss: {:.5f}".format(
idx, len(eval_dataloader), tmp_eval_loss.numpy()[0]))
eval_loss += tmp_eval_loss.item()
nb_eval_steps += 1
if preds is None:
preds = logits.numpy()
out_label_ids = batch["labels"].numpy()
else:
preds = np.append(preds, logits.numpy(), axis=0)
out_label_ids = np.append(
out_label_ids, batch["labels"].numpy(), axis=0)
eval_loss = eval_loss / nb_eval_steps
preds = np.argmax(preds, axis=2)
# label_map = {i: label.upper() for i, label in enumerate(labels)}
out_label_list = [[] for _ in range(out_label_ids.shape[0])]
preds_list = [[] for _ in range(out_label_ids.shape[0])]
for i in range(out_label_ids.shape[0]):
for j in range(out_label_ids.shape[1]):
if out_label_ids[i, j] != pad_token_label_id:
out_label_list[i].append(id2label_map[out_label_ids[i][j]])
preds_list[i].append(id2label_map[preds[i][j]])
results = {
"loss": eval_loss,
"precision": precision_score(out_label_list, preds_list),
"recall": recall_score(out_label_list, preds_list),
"f1": f1_score(out_label_list, preds_list),
}
with open(os.path.join(args.output_dir, "test_gt.txt"), "w") as fout:
for lbl in out_label_list:
for l in lbl:
fout.write(l + "\t")
fout.write("\n")
with open(os.path.join(args.output_dir, "test_pred.txt"), "w") as fout:
for lbl in preds_list:
for l in lbl:
fout.write(l + "\t")
fout.write("\n")
report = classification_report(out_label_list, preds_list)
logger.info("\n" + report)
logger.info("***** Eval results %s *****", prefix)
for key in sorted(results.keys()):
logger.info(" %s = %s", key, str(results[key]))
return results, preds_list
def print_arguments(args):
"""print arguments"""
print('----------- Configuration Arguments -----------')
for arg, value in sorted(vars(args).items()):
print('%s: %s' % (arg, value))
print('------------------------------------------------')
if __name__ == "__main__":
args = parse_args()
print_arguments(args)
train(args)
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import argparse
import cv2
import random
import numpy as np
import imghdr
from copy import deepcopy
import paddle
from PIL import Image, ImageDraw, ImageFont
from paddleocr import PaddleOCR
def get_bio_label_maps(label_map_path):
with open(label_map_path, "r") as fin:
lines = fin.readlines()
lines = [line.strip() for line in lines]
if "O" not in lines:
lines.insert(0, "O")
labels = []
for line in lines:
if line == "O":
labels.append("O")
else:
labels.append("B-" + line)
labels.append("I-" + line)
label2id_map = {label: idx for idx, label in enumerate(labels)}
id2label_map = {idx: label for idx, label in enumerate(labels)}
return label2id_map, id2label_map
def get_image_file_list(img_file):
imgs_lists = []
if img_file is None or not os.path.exists(img_file):
raise Exception("not found any img file in {}".format(img_file))
img_end = {'jpg', 'bmp', 'png', 'jpeg', 'rgb', 'tif', 'tiff', 'gif', 'GIF'}
if os.path.isfile(img_file) and imghdr.what(img_file) in img_end:
imgs_lists.append(img_file)
elif os.path.isdir(img_file):
for single_file in os.listdir(img_file):
file_path = os.path.join(img_file, single_file)
if os.path.isfile(file_path) and imghdr.what(file_path) in img_end:
imgs_lists.append(file_path)
if len(imgs_lists) == 0:
raise Exception("not found any img file in {}".format(img_file))
imgs_lists = sorted(imgs_lists)
return imgs_lists
def draw_ser_results(image,
ocr_results,
font_path="../doc/fonts/simfang.ttf",
font_size=18):
np.random.seed(0)
color = (np.random.permutation(range(255)),
np.random.permutation(range(255)),
np.random.permutation(range(255)))
color_map = {
idx: (color[0][idx], color[1][idx], color[2][idx])
for idx in range(1, 255)
}
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
img_new = image.copy()
draw = ImageDraw.Draw(img_new)
font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
for ocr_info in ocr_results:
if ocr_info["pred_id"] not in color_map:
continue
color = color_map[ocr_info["pred_id"]]
# draw ocr results outline
bbox = ocr_info["bbox"]
bbox = ((bbox[0], bbox[1]), (bbox[2], bbox[3]))
draw.rectangle(bbox, fill=color)
# draw ocr results
text = "{}: {}".format(ocr_info["pred"], ocr_info["text"])
start_y = max(0, bbox[0][1] - font_size)
tw = font.getsize(text)[0]
draw.rectangle(
[(bbox[0][0] + 1, start_y), (bbox[0][0] + tw + 1,
start_y + font_size)],
fill=(0, 0, 255))
draw.text(
(bbox[0][0] + 1, start_y), text, fill=(255, 255, 255), font=font)
img_new = Image.blend(image, img_new, 0.5)
return np.array(img_new)
def build_ocr_engine(rec_model_dir, det_model_dir):
ocr_engine = PaddleOCR(
rec_model_dir=rec_model_dir,
det_model_dir=det_model_dir,
use_angle_cls=False)
return ocr_engine
# pad sentences
def pad_sentences(tokenizer,
encoded_inputs,
max_seq_len=512,
pad_to_max_seq_len=True,
return_attention_mask=True,
return_token_type_ids=True,
return_overflowing_tokens=False,
return_special_tokens_mask=False):
# Padding with larger size, reshape is carried out
max_seq_len = (
len(encoded_inputs["input_ids"]) // max_seq_len + 1) * max_seq_len
needs_to_be_padded = pad_to_max_seq_len and \
max_seq_len and len(encoded_inputs["input_ids"]) < max_seq_len
if needs_to_be_padded:
difference = max_seq_len - len(encoded_inputs["input_ids"])
if tokenizer.padding_side == 'right':
if return_attention_mask:
encoded_inputs["attention_mask"] = [1] * len(encoded_inputs[
"input_ids"]) + [0] * difference
if return_token_type_ids:
encoded_inputs["token_type_ids"] = (
encoded_inputs["token_type_ids"] +
[tokenizer.pad_token_type_id] * difference)
if return_special_tokens_mask:
encoded_inputs["special_tokens_mask"] = encoded_inputs[
"special_tokens_mask"] + [1] * difference
encoded_inputs["input_ids"] = encoded_inputs[
"input_ids"] + [tokenizer.pad_token_id] * difference
encoded_inputs["bbox"] = encoded_inputs["bbox"] + [[0, 0, 0, 0]
] * difference
else:
if return_attention_mask:
encoded_inputs["attention_mask"] = [1] * len(encoded_inputs[
"input_ids"])
return encoded_inputs
def split_page(encoded_inputs, max_seq_len=512):
"""
truncate is often used in training process
"""
for key in encoded_inputs:
encoded_inputs[key] = paddle.to_tensor(encoded_inputs[key])
if encoded_inputs[key].ndim <= 1: # for input_ids, att_mask and so on
encoded_inputs[key] = encoded_inputs[key].reshape([-1, max_seq_len])
else: # for bbox
encoded_inputs[key] = encoded_inputs[key].reshape(
[-1, max_seq_len, 4])
return encoded_inputs
def preprocess(
tokenizer,
ori_img,
ocr_info,
img_size=(224, 224),
pad_token_label_id=-100,
max_seq_len=512,
add_special_ids=False,
return_attention_mask=True, ):
ocr_info = deepcopy(ocr_info)
height = ori_img.shape[0]
width = ori_img.shape[1]
img = cv2.resize(ori_img,
(224, 224)).transpose([2, 0, 1]).astype(np.float32)
segment_offset_id = []
words_list = []
bbox_list = []
input_ids_list = []
token_type_ids_list = []
for info in ocr_info:
# x1, y1, x2, y2
bbox = info["bbox"]
bbox[0] = int(bbox[0] * 1000.0 / width)
bbox[2] = int(bbox[2] * 1000.0 / width)
bbox[1] = int(bbox[1] * 1000.0 / height)
bbox[3] = int(bbox[3] * 1000.0 / height)
text = info["text"]
encode_res = tokenizer.encode(
text, pad_to_max_seq_len=False, return_attention_mask=True)
if not add_special_ids:
# TODO: use tok.all_special_ids to remove
encode_res["input_ids"] = encode_res["input_ids"][1:-1]
encode_res["token_type_ids"] = encode_res["token_type_ids"][1:-1]
encode_res["attention_mask"] = encode_res["attention_mask"][1:-1]
input_ids_list.extend(encode_res["input_ids"])
token_type_ids_list.extend(encode_res["token_type_ids"])
bbox_list.extend([bbox] * len(encode_res["input_ids"]))
words_list.append(text)
segment_offset_id.append(len(input_ids_list))
encoded_inputs = {
"input_ids": input_ids_list,
"token_type_ids": token_type_ids_list,
"bbox": bbox_list,
"attention_mask": [1] * len(input_ids_list),
}
encoded_inputs = pad_sentences(
tokenizer,
encoded_inputs,
max_seq_len=max_seq_len,
return_attention_mask=return_attention_mask)
encoded_inputs = split_page(encoded_inputs)
fake_bs = encoded_inputs["input_ids"].shape[0]
encoded_inputs["image"] = paddle.to_tensor(img).unsqueeze(0).expand(
[fake_bs] + list(img.shape))
encoded_inputs["segment_offset_id"] = segment_offset_id
return encoded_inputs
def postprocess(attention_mask, preds, id2label_map):
if isinstance(preds, paddle.Tensor):
preds = preds.numpy()
preds = np.argmax(preds, axis=2)
preds_list = [[] for _ in range(preds.shape[0])]
# keep batch info
for i in range(preds.shape[0]):
for j in range(preds.shape[1]):
if attention_mask[i][j] == 1:
preds_list[i].append(id2label_map[preds[i][j]])
return preds_list
def merge_preds_list_with_ocr_info(ocr_info, segment_offset_id, preds_list,
label2id_map_for_draw):
# must ensure the preds_list is generated from the same image
preds = [p for pred in preds_list for p in pred]
id2label_map = dict()
for key in label2id_map_for_draw:
val = label2id_map_for_draw[key]
if key == "O":
id2label_map[val] = key
if key.startswith("B-") or key.startswith("I-"):
id2label_map[val] = key[2:]
else:
id2label_map[val] = key
for idx in range(len(segment_offset_id)):
if idx == 0:
start_id = 0
else:
start_id = segment_offset_id[idx - 1]
end_id = segment_offset_id[idx]
curr_pred = preds[start_id:end_id]
curr_pred = [label2id_map_for_draw[p] for p in curr_pred]
if len(curr_pred) <= 0:
pred_id = 0
else:
counts = np.bincount(curr_pred)
pred_id = np.argmax(counts)
ocr_info[idx]["pred_id"] = int(pred_id)
ocr_info[idx]["pred"] = id2label_map[int(pred_id)]
return ocr_info
def parse_args():
parser = argparse.ArgumentParser()
# Required parameters
# yapf: disable
parser.add_argument("--model_name_or_path", default=None, type=str, required=True,)
parser.add_argument("--train_data_dir", default=None, type=str, required=False,)
parser.add_argument("--train_label_path", default=None, type=str, required=False,)
parser.add_argument("--eval_data_dir", default=None, type=str, required=False,)
parser.add_argument("--eval_label_path", default=None, type=str, required=False,)
parser.add_argument("--output_dir", default=None, type=str, required=True,)
parser.add_argument("--max_seq_length", default=512, type=int,)
parser.add_argument("--evaluate_during_training", action="store_true",)
parser.add_argument("--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.",)
parser.add_argument("--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for eval.",)
parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.",)
parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.",)
parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.",)
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.",)
parser.add_argument("--num_train_epochs", default=3, type=int, help="Total number of training epochs to perform.",)
parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.",)
parser.add_argument("--eval_steps", type=int, default=10, help="eval every X updates steps.",)
parser.add_argument("--save_steps", type=int, default=50, help="Save checkpoint every X updates steps.",)
parser.add_argument("--seed", type=int, default=2048, help="random seed for initialization",)
parser.add_argument("--ocr_rec_model_dir", default=None, type=str, )
parser.add_argument("--ocr_det_model_dir", default=None, type=str, )
parser.add_argument("--label_map_path", default="./labels/labels_ser.txt", type=str, required=False, )
parser.add_argument("--infer_imgs", default=None, type=str, required=False)
parser.add_argument("--ocr_json_path", default=None, type=str, required=False, help="ocr prediction results")
# yapf: enable
args = parser.parse_args()
return args
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import cv2
import numpy as np
import paddle
import copy
from paddle.io import Dataset
__all__ = ["XFUNDataset"]
class XFUNDataset(Dataset):
"""
Example:
print("=====begin to build dataset=====")
from paddlenlp.transformers import LayoutXLMTokenizer
tokenizer = LayoutXLMTokenizer.from_pretrained("/paddle/models/transformers/layoutxlm-base-paddle/")
tok_res = tokenizer.tokenize("Maribyrnong")
# res = tokenizer.convert_ids_to_tokens(val_data["input_ids"][0])
dataset = XfunDatasetForSer(
tokenizer,
data_dir="./zh.val/",
label_path="zh.val/xfun_normalize_val.json",
img_size=(224,224))
print(len(dataset))
data = dataset[0]
print(data.keys())
print("input_ids: ", data["input_ids"])
print("labels: ", data["labels"])
print("token_type_ids: ", data["token_type_ids"])
print("words_list: ", data["words_list"])
print("image shape: ", data["image"].shape)
"""
def __init__(self,
tokenizer,
data_dir,
label_path,
contains_re=False,
label2id_map=None,
img_size=(224, 224),
pad_token_label_id=None,
add_special_ids=False,
return_attention_mask=True,
load_mode='all',
max_seq_len=512):
super().__init__()
self.tokenizer = tokenizer
self.data_dir = data_dir
self.label_path = label_path
self.contains_re = contains_re
self.label2id_map = label2id_map
self.img_size = img_size
self.pad_token_label_id = pad_token_label_id
self.add_special_ids = add_special_ids
self.return_attention_mask = return_attention_mask
self.load_mode = load_mode
self.max_seq_len = max_seq_len
if self.pad_token_label_id is None:
self.pad_token_label_id = paddle.nn.CrossEntropyLoss().ignore_index
self.all_lines = self.read_all_lines()
self.entities_labels = {'HEADER': 0, 'QUESTION': 1, 'ANSWER': 2}
self.return_keys = {
'bbox': 'np',
'input_ids': 'np',
'labels': 'np',
'attention_mask': 'np',
'image': 'np',
'token_type_ids': 'np',
'entities': 'dict',
'relations': 'dict',
}
if load_mode == "all":
self.encoded_inputs_all = self._parse_label_file_all()
def pad_sentences(self,
encoded_inputs,
max_seq_len=512,
pad_to_max_seq_len=True,
return_attention_mask=True,
return_token_type_ids=True,
truncation_strategy="longest_first",
return_overflowing_tokens=False,
return_special_tokens_mask=False):
# Padding
needs_to_be_padded = pad_to_max_seq_len and \
max_seq_len and len(encoded_inputs["input_ids"]) < max_seq_len
if needs_to_be_padded:
difference = max_seq_len - len(encoded_inputs["input_ids"])
if self.tokenizer.padding_side == 'right':
if return_attention_mask:
encoded_inputs["attention_mask"] = [1] * len(encoded_inputs[
"input_ids"]) + [0] * difference
if return_token_type_ids:
encoded_inputs["token_type_ids"] = (
encoded_inputs["token_type_ids"] +
[self.tokenizer.pad_token_type_id] * difference)
if return_special_tokens_mask:
encoded_inputs["special_tokens_mask"] = encoded_inputs[
"special_tokens_mask"] + [1] * difference
encoded_inputs["input_ids"] = encoded_inputs[
"input_ids"] + [self.tokenizer.pad_token_id] * difference
encoded_inputs["labels"] = encoded_inputs[
"labels"] + [self.pad_token_label_id] * difference
encoded_inputs["bbox"] = encoded_inputs[
"bbox"] + [[0, 0, 0, 0]] * difference
elif self.tokenizer.padding_side == 'left':
if return_attention_mask:
encoded_inputs["attention_mask"] = [0] * difference + [
1
] * len(encoded_inputs["input_ids"])
if return_token_type_ids:
encoded_inputs["token_type_ids"] = (
[self.tokenizer.pad_token_type_id] * difference +
encoded_inputs["token_type_ids"])
if return_special_tokens_mask:
encoded_inputs["special_tokens_mask"] = [
1
] * difference + encoded_inputs["special_tokens_mask"]
encoded_inputs["input_ids"] = [
self.tokenizer.pad_token_id
] * difference + encoded_inputs["input_ids"]
encoded_inputs["labels"] = [
self.pad_token_label_id
] * difference + encoded_inputs["labels"]
encoded_inputs["bbox"] = [
[0, 0, 0, 0]
] * difference + encoded_inputs["bbox"]
else:
if return_attention_mask:
encoded_inputs["attention_mask"] = [1] * len(encoded_inputs[
"input_ids"])
return encoded_inputs
def truncate_inputs(self, encoded_inputs, max_seq_len=512):
for key in encoded_inputs:
if key == "sample_id":
continue
length = min(len(encoded_inputs[key]), max_seq_len)
encoded_inputs[key] = encoded_inputs[key][:length]
return encoded_inputs
def read_all_lines(self, ):
with open(self.label_path, "r") as fin:
lines = fin.readlines()
return lines
def _parse_label_file_all(self):
"""
parse all samples
"""
encoded_inputs_all = []
for line in self.all_lines:
encoded_inputs_all.extend(self._parse_label_file(line))
return encoded_inputs_all
def _parse_label_file(self, line):
"""
parse single sample
"""
image_name, info_str = line.split("\t")
image_path = os.path.join(self.data_dir, image_name)
def add_imgge_path(x):
x['image_path'] = image_path
return x
encoded_inputs = self._read_encoded_inputs_sample(info_str)
if self.contains_re:
encoded_inputs = self._chunk_re(encoded_inputs)
else:
encoded_inputs = self._chunk_ser(encoded_inputs)
encoded_inputs = list(map(add_imgge_path, encoded_inputs))
return encoded_inputs
def _read_encoded_inputs_sample(self, info_str):
"""
parse label info
"""
# read text info
info_dict = json.loads(info_str)
height = info_dict["height"]
width = info_dict["width"]
words_list = []
bbox_list = []
input_ids_list = []
token_type_ids_list = []
gt_label_list = []
if self.contains_re:
# for re
entities = []
relations = []
id2label = {}
entity_id_to_index_map = {}
empty_entity = set()
for info in info_dict["ocr_info"]:
if self.contains_re:
# for re
if len(info["text"]) == 0:
empty_entity.add(info["id"])
continue
id2label[info["id"]] = info["label"]
relations.extend([tuple(sorted(l)) for l in info["linking"]])
# x1, y1, x2, y2
bbox = info["bbox"]
label = info["label"]
bbox[0] = int(bbox[0] * 1000.0 / width)
bbox[2] = int(bbox[2] * 1000.0 / width)
bbox[1] = int(bbox[1] * 1000.0 / height)
bbox[3] = int(bbox[3] * 1000.0 / height)
text = info["text"]
encode_res = self.tokenizer.encode(
text, pad_to_max_seq_len=False, return_attention_mask=True)
gt_label = []
if not self.add_special_ids:
# TODO: use tok.all_special_ids to remove
encode_res["input_ids"] = encode_res["input_ids"][1:-1]
encode_res["token_type_ids"] = encode_res["token_type_ids"][1:
-1]
encode_res["attention_mask"] = encode_res["attention_mask"][1:
-1]
if label.lower() == "other":
gt_label.extend([0] * len(encode_res["input_ids"]))
else:
gt_label.append(self.label2id_map[("b-" + label).upper()])
gt_label.extend([self.label2id_map[("i-" + label).upper()]] *
(len(encode_res["input_ids"]) - 1))
if self.contains_re:
if gt_label[0] != self.label2id_map["O"]:
entity_id_to_index_map[info["id"]] = len(entities)
entities.append({
"start": len(input_ids_list),
"end":
len(input_ids_list) + len(encode_res["input_ids"]),
"label": label.upper(),
})
input_ids_list.extend(encode_res["input_ids"])
token_type_ids_list.extend(encode_res["token_type_ids"])
bbox_list.extend([bbox] * len(encode_res["input_ids"]))
gt_label_list.extend(gt_label)
words_list.append(text)
encoded_inputs = {
"input_ids": input_ids_list,
"labels": gt_label_list,
"token_type_ids": token_type_ids_list,
"bbox": bbox_list,
"attention_mask": [1] * len(input_ids_list),
# "words_list": words_list,
}
encoded_inputs = self.pad_sentences(
encoded_inputs,
max_seq_len=self.max_seq_len,
return_attention_mask=self.return_attention_mask)
encoded_inputs = self.truncate_inputs(encoded_inputs)
if self.contains_re:
relations = self._relations(entities, relations, id2label,
empty_entity, entity_id_to_index_map)
encoded_inputs['relations'] = relations
encoded_inputs['entities'] = entities
return encoded_inputs
def _chunk_ser(self, encoded_inputs):
encoded_inputs_all = []
seq_len = len(encoded_inputs['input_ids'])
chunk_size = 512
for chunk_id, index in enumerate(range(0, seq_len, chunk_size)):
chunk_beg = index
chunk_end = min(index + chunk_size, seq_len)
encoded_inputs_example = {}
for key in encoded_inputs:
encoded_inputs_example[key] = encoded_inputs[key][chunk_beg:
chunk_end]
encoded_inputs_all.append(encoded_inputs_example)
return encoded_inputs_all
def _chunk_re(self, encoded_inputs):
# prepare data
entities = encoded_inputs.pop('entities')
relations = encoded_inputs.pop('relations')
encoded_inputs_all = []
chunk_size = 512
for chunk_id, index in enumerate(
range(0, len(encoded_inputs["input_ids"]), chunk_size)):
item = {}
for k in encoded_inputs:
item[k] = encoded_inputs[k][index:index + chunk_size]
# select entity in current chunk
entities_in_this_span = []
global_to_local_map = {} #
for entity_id, entity in enumerate(entities):
if (index <= entity["start"] < index + chunk_size and
index <= entity["end"] < index + chunk_size):
entity["start"] = entity["start"] - index
entity["end"] = entity["end"] - index
global_to_local_map[entity_id] = len(entities_in_this_span)
entities_in_this_span.append(entity)
# select relations in current chunk
relations_in_this_span = []
for relation in relations:
if (index <= relation["start_index"] < index + chunk_size and
index <= relation["end_index"] < index + chunk_size):
relations_in_this_span.append({
"head": global_to_local_map[relation["head"]],
"tail": global_to_local_map[relation["tail"]],
"start_index": relation["start_index"] - index,
"end_index": relation["end_index"] - index,
})
item.update({
"entities": reformat(entities_in_this_span),
"relations": reformat(relations_in_this_span),
})
item['entities']['label'] = [
self.entities_labels[x] for x in item['entities']['label']
]
encoded_inputs_all.append(item)
return encoded_inputs_all
def _relations(self, entities, relations, id2label, empty_entity,
entity_id_to_index_map):
"""
build relations
"""
relations = list(set(relations))
relations = [
rel for rel in relations
if rel[0] not in empty_entity and rel[1] not in empty_entity
]
kv_relations = []
for rel in relations:
pair = [id2label[rel[0]], id2label[rel[1]]]
if pair == ["question", "answer"]:
kv_relations.append({
"head": entity_id_to_index_map[rel[0]],
"tail": entity_id_to_index_map[rel[1]]
})
elif pair == ["answer", "question"]:
kv_relations.append({
"head": entity_id_to_index_map[rel[1]],
"tail": entity_id_to_index_map[rel[0]]
})
else:
continue
relations = sorted(
[{
"head": rel["head"],
"tail": rel["tail"],
"start_index": get_relation_span(rel, entities)[0],
"end_index": get_relation_span(rel, entities)[1],
} for rel in kv_relations],
key=lambda x: x["head"], )
return relations
def load_img(self, image_path):
# read img
img = cv2.imread(image_path)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
resize_h, resize_w = self.img_size
im_shape = img.shape[0:2]
im_scale_y = resize_h / im_shape[0]
im_scale_x = resize_w / im_shape[1]
img_new = cv2.resize(
img, None, None, fx=im_scale_x, fy=im_scale_y, interpolation=2)
mean = np.array([0.485, 0.456, 0.406])[np.newaxis, np.newaxis, :]
std = np.array([0.229, 0.224, 0.225])[np.newaxis, np.newaxis, :]
img_new = img_new / 255.0
img_new -= mean
img_new /= std
img = img_new.transpose((2, 0, 1))
return img
def __getitem__(self, idx):
if self.load_mode == "all":
data = copy.deepcopy(self.encoded_inputs_all[idx])
else:
data = self._parse_label_file(self.all_lines[idx])[0]
image_path = data.pop('image_path')
data["image"] = self.load_img(image_path)
return_data = {}
for k, v in data.items():
if k in self.return_keys:
if self.return_keys[k] == 'np':
v = np.array(v)
return_data[k] = v
return return_data
def __len__(self, ):
if self.load_mode == "all":
return len(self.encoded_inputs_all)
else:
return len(self.all_lines)
def get_relation_span(rel, entities):
bound = []
for entity_index in [rel["head"], rel["tail"]]:
bound.append(entities[entity_index]["start"])
bound.append(entities[entity_index]["end"])
return min(bound), max(bound)
def reformat(data):
new_data = {}
for item in data:
for k, v in item.items():
if k not in new_data:
new_data[k] = []
new_data[k].append(v)
return new_data
......@@ -15,4 +15,4 @@ op.det.local_service_conf.thread_num:1|6
op.det.local_service_conf.use_trt:False|True
op.det.local_service_conf.precision:fp32|fp16|int8
pipline:pipeline_rpc_client.py|pipeline_http_client.py
--image_dir:../../doc/imgs
\ No newline at end of file
--image_dir:../../doc/imgs
......@@ -201,8 +201,11 @@ fi
if [ ${MODE} = "serving_infer" ];then
# prepare serving env
python_name=$(func_parser_value "${lines[2]}")
wget https://paddle-serving.bj.bcebos.com/chain/paddle_serving_server_gpu-0.0.0.post101-py3-none-any.whl
python_name_list=$(func_parser_value "${lines[2]}")
IFS='|'
array=(${python_name_list})
python_name=${array[0]}
wget -nc https://paddle-serving.bj.bcebos.com/chain/paddle_serving_server_gpu-0.0.0.post101-py3-none-any.whl
${python_name} -m pip install install paddle_serving_server_gpu-0.0.0.post101-py3-none-any.whl
${python_name} -m pip install paddle_serving_client==0.6.1
${python_name} -m pip install paddle-serving-app==0.6.3
......
# 飞桨训推一体认证(TIPC)
# 飞桨训推一体全流程(TIPC)
## 1. 简介
飞桨除了基本的模型训练和预测,还提供了支持多端多平台的高性能推理部署工具。本文档提供了PaddleOCR中所有模型的飞桨训推一体认证 (Training and Inference Pipeline Certification(TIPC)) 信息和测试工具,方便用户查阅每种模型的训练推理部署打通情况,并可以进行一键测试。
飞桨除了基本的模型训练和预测,还提供了支持多端多平台的高性能推理部署工具。本文档提供了PaddleOCR中所有模型的飞桨训推一体全流程(Training and Inference Pipeline Criterion(TIPC))信息和测试工具,方便用户查阅每种模型的训练推理部署打通情况,并可以进行一键测试。
<div align="center">
<img src="docs/guide.png" width="1000">
......
......@@ -10,7 +10,7 @@ lines=(${dataline})
# parser serving
model_name=$(func_parser_value "${lines[1]}")
python=$(func_parser_value "${lines[2]}")
python_list=$(func_parser_value "${lines[2]}")
trans_model_py=$(func_parser_value "${lines[3]}")
infer_model_dir_key=$(func_parser_key "${lines[4]}")
infer_model_dir_value=$(func_parser_value "${lines[4]}")
......@@ -54,14 +54,15 @@ function func_serving(){
set_serving_server=$(func_set_params "${serving_server_key}" "${serving_server_value}")
set_serving_client=$(func_set_params "${serving_client_key}" "${serving_client_value}")
set_image_dir=$(func_set_params "${image_dir_key}" "${image_dir_value}")
trans_model_cmd="${python} ${trans_model_py} ${set_dirname} ${set_model_filename} ${set_params_filename} ${set_serving_server} ${set_serving_client}"
python_list=(${python_list})
trans_model_cmd="${python_list[0]} ${trans_model_py} ${set_dirname} ${set_model_filename} ${set_params_filename} ${set_serving_server} ${set_serving_client}"
eval $trans_model_cmd
cd ${serving_dir_value}
echo $PWD
unset https_proxy
unset http_proxy
for python in ${python[*]}; do
if [ ${python} = "cpp"]; then
for python in ${python_list[*]}; do
if [ ${python} = "cpp" ]; then
for use_gpu in ${web_use_gpu_list[*]}; do
if [ ${use_gpu} = "null" ]; then
web_service_cpp_cmd="${python} -m paddle_serving_server.serve --model ppocr_det_mobile_2.0_serving/ ppocr_rec_mobile_2.0_serving/ --port 9293"
......@@ -91,9 +92,6 @@ function func_serving(){
echo ${ues_gpu}
if [ ${use_gpu} = "null" ]; then
for use_mkldnn in ${web_use_mkldnn_list[*]}; do
if [ ${use_mkldnn} = "False" ]; then
continue
fi
for threads in ${web_cpu_threads_list[*]}; do
set_cpu_threads=$(func_set_params "${web_cpu_threads_key}" "${threads}")
web_service_cmd="${python} ${web_service_py} ${web_use_gpu_key}=${use_gpu} ${web_use_mkldnn_key}=${use_mkldnn} ${set_cpu_threads} &"
......@@ -124,6 +122,9 @@ function func_serving(){
continue
fi
set_tensorrt=$(func_set_params "${web_use_trt_key}" "${use_trt}")
if [ ${use_trt} = True ]; then
device_type=2
fi
set_precision=$(func_set_params "${web_precision_key}" "${precision}")
web_service_cmd="${python} ${web_service_py} ${web_use_gpu_key}=${use_gpu} ${set_tensorrt} ${set_precision} & "
eval $web_service_cmd
......
......@@ -271,8 +271,13 @@ def create_predictor(args, mode, logger):
min_input_shape = {"x": [1, 3, 10, 10]}
max_input_shape = {"x": [1, 3, 512, 512]}
opt_input_shape = {"x": [1, 3, 256, 256]}
config.set_trt_dynamic_shape_info(min_input_shape, max_input_shape,
opt_input_shape)
if mode == "rec":
if args.rec_algorithm == "CRNN":
config.set_trt_dynamic_shape_info(
min_input_shape, max_input_shape, opt_input_shape)
else:
config.set_trt_dynamic_shape_info(
min_input_shape, max_input_shape, opt_input_shape)
else:
config.disable_gpu()
......@@ -311,7 +316,10 @@ def create_predictor(args, mode, logger):
def get_infer_gpuid():
cmd = "env | grep CUDA_VISIBLE_DEVICES"
if not paddle.fluid.core.is_compiled_with_rocm():
cmd = "env | grep CUDA_VISIBLE_DEVICES"
else:
cmd = "env | grep HIP_VISIBLE_DEVICES"
env_cuda = os.popen(cmd).readlines()
if len(env_cuda) == 0:
return 0
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册