提交 31a01591 编写于 作者: 文幕地方's avatar 文幕地方

fix ser tipc error

上级 5bf01f19
Global:
use_gpu: True
epoch_num: &epoch_num 200
log_smooth_window: 10
print_batch_step: 10
save_model_dir: ./output/ser_layoutxlm_xfund_zh
save_epoch_step: 2000
# evaluation is run every 10 iterations after the 0th iteration
eval_batch_step: [ 0, 187 ]
cal_metric_during_train: False
save_inference_dir:
use_visualdl: False
seed: 2022
infer_img: ppstructure/docs/kie/input/zh_val_42.jpg
save_res_path: ./output/ser_layoutxlm_xfund_zh/res
Architecture:
model_type: kie
algorithm: &algorithm "LayoutXLM"
Transform:
Backbone:
name: LayoutXLMForSer
pretrained: True
checkpoints:
num_classes: &num_classes 7
Loss:
name: VQASerTokenLayoutLMLoss
num_classes: *num_classes
key: "backbone_out"
Optimizer:
name: AdamW
beta1: 0.9
beta2: 0.999
lr:
name: Linear
learning_rate: 0.00005
epochs: *epoch_num
warmup_epoch: 2
regularizer:
name: L2
factor: 0.00000
PostProcess:
name: VQASerTokenLayoutLMPostProcess
class_path: &class_path train_data/XFUND/class_list_xfun.txt
Metric:
name: VQASerTokenMetric
main_indicator: hmean
Train:
dataset:
name: SimpleDataSet
data_dir: train_data/XFUND/zh_train/image
label_file_list:
- train_data/XFUND/zh_train/train.json
ratio_list: [ 1.0 ]
transforms:
- DecodeImage: # load image
img_mode: RGB
channel_first: False
- VQATokenLabelEncode: # Class handling label
contains_re: False
algorithm: *algorithm
class_path: *class_path
- VQATokenPad:
max_seq_len: &max_seq_len 512
return_attention_mask: True
- VQASerTokenChunk:
max_seq_len: *max_seq_len
- Resize:
size: [224,224]
- NormalizeImage:
scale: 1
mean: [ 123.675, 116.28, 103.53 ]
std: [ 58.395, 57.12, 57.375 ]
order: 'hwc'
- ToCHWImage:
- KeepKeys:
keep_keys: [ 'input_ids', 'bbox', 'attention_mask', 'token_type_ids', 'image', 'labels'] # dataloader will return list in this order
loader:
shuffle: True
drop_last: False
batch_size_per_card: 8
num_workers: 4
Eval:
dataset:
name: SimpleDataSet
data_dir: train_data/XFUND/zh_val/image
label_file_list:
- train_data/XFUND/zh_val/val.json
transforms:
- DecodeImage: # load image
img_mode: RGB
channel_first: False
- VQATokenLabelEncode: # Class handling label
contains_re: False
algorithm: *algorithm
class_path: *class_path
- VQATokenPad:
max_seq_len: *max_seq_len
return_attention_mask: True
- VQASerTokenChunk:
max_seq_len: *max_seq_len
- Resize:
size: [224,224]
- NormalizeImage:
scale: 1
mean: [ 123.675, 116.28, 103.53 ]
std: [ 58.395, 57.12, 57.375 ]
order: 'hwc'
- ToCHWImage:
- KeepKeys:
keep_keys: [ 'input_ids', 'bbox', 'attention_mask', 'token_type_ids', 'image', 'labels'] # dataloader will return list in this order
loader:
shuffle: False
drop_last: False
batch_size_per_card: 8
num_workers: 4
......@@ -13,7 +13,7 @@ train_infer_img_dir:ppstructure/docs/kie/input/zh_val_42.jpg
null:null
##
trainer:norm_train
norm_train:tools/train.py -c configs/kie/layoutlm_series/ser_layoutlm_xfund_zh.yml -o Global.print_batch_step=1 Global.eval_batch_step=[1000,1000] Train.loader.shuffle=false
norm_train:tools/train.py -c test_tipc/configs/layoutxlm_ser/ser_layoutxlm_xfund_zh.yml -o Global.print_batch_step=1 Global.eval_batch_step=[1000,1000] Train.loader.shuffle=false
pact_train:null
fpgm_train:null
distill_train:null
......@@ -27,7 +27,7 @@ null:null
===========================infer_params===========================
Global.save_inference_dir:./output/
Architecture.Backbone.checkpoints:
norm_export:tools/export_model.py -c configs/kie/layoutlm_series/ser_layoutlm_xfund_zh.yml -o
norm_export:tools/export_model.py -c test_tipc/configs/layoutxlm_ser/ser_layoutxlm_xfund_zh.yml -o
quant_export:
fpgm_export:
distill_export:null
......
......@@ -21,7 +21,10 @@ model_name=$(func_parser_value "${lines[1]}")
trainer_list=$(func_parser_value "${lines[14]}")
if [ ${MODE} = "benchmark_train" ];then
pip install -r requirements.txt
python_name_list=$(func_parser_value "${lines[2]}")
array=(${python_name_list})
python_name=${array[0]}
${python_name} -m pip install -r requirements.txt
if [[ ${model_name} =~ "ch_ppocr_mobile_v2_0_det" || ${model_name} =~ "det_mv3_db_v2_0" ]];then
wget -nc -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/pretrained/MobileNetV3_large_x0_5_pretrained.pdparams --no-check-certificate
rm -rf ./train_data/icdar2015
......@@ -107,8 +110,8 @@ if [ ${MODE} = "benchmark_train" ];then
cd ../
fi
if [ ${model_name} == "layoutxlm_ser" ] || [ ${model_name} == "vi_layoutxlm_ser" ]; then
pip install -r ppstructure/kie/requirements.txt
pip install opencv-python -U
${python_name} -m pip install -r ppstructure/kie/requirements.txt
${python_name} -m pip install opencv-python -U
wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/ppstructure/dataset/XFUND.tar --no-check-certificate
cd ./train_data/ && tar xf XFUND.tar
# expand gt.txt 10 times
......@@ -122,6 +125,10 @@ if [ ${MODE} = "benchmark_train" ];then
fi
if [ ${MODE} = "lite_train_lite_infer" ];then
python_name_list=$(func_parser_value "${lines[2]}")
array=(${python_name_list})
python_name=${array[0]}
${python_name} -m pip install -r requirements.txt
# pretrain lite train data
wget -nc -P ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_5_pretrained.pdparams --no-check-certificate
wget -nc -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_mv3_db_v2.0_train.tar --no-check-certificate
......@@ -230,8 +237,8 @@ if [ ${MODE} = "lite_train_lite_infer" ];then
cd ./pretrain_models/ && tar xf rec_r32_gaspin_bilstm_att_train.tar && cd ../
fi
if [ ${model_name} == "layoutxlm_ser" ] || [ ${model_name} == "vi_layoutxlm_ser" ]; then
pip install -r ppstructure/kie/requirements.txt
pip install opencv-python -U
${python_name} -m pip install -r ppstructure/kie/requirements.txt
${python_name} -m pip install opencv-python -U
wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/ppstructure/dataset/XFUND.tar --no-check-certificate
cd ./train_data/ && tar xf XFUND.tar
cd ../
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册