未验证 提交 316ca2f8 编写于 作者: Z zhoujun 提交者: GitHub

Merge pull request #5693 from WenmuZhou/fix_cpp_lite_android

[Cpp Infer] fix bug in mem copy
...@@ -15,108 +15,115 @@ ...@@ -15,108 +15,115 @@
#include <include/ocr_rec.h> #include <include/ocr_rec.h>
namespace PaddleOCR { namespace PaddleOCR {
void CRNNRecognizer::Run(std::vector<cv::Mat> img_list, std::vector<double> *times) { void CRNNRecognizer::Run(std::vector<cv::Mat> img_list,
std::chrono::duration<float> preprocess_diff = std::chrono::steady_clock::now() - std::chrono::steady_clock::now(); std::vector<double> *times) {
std::chrono::duration<float> inference_diff = std::chrono::steady_clock::now() - std::chrono::steady_clock::now(); std::chrono::duration<float> preprocess_diff =
std::chrono::duration<float> postprocess_diff = std::chrono::steady_clock::now() - std::chrono::steady_clock::now(); std::chrono::steady_clock::now() - std::chrono::steady_clock::now();
std::chrono::duration<float> inference_diff =
int img_num = img_list.size(); std::chrono::steady_clock::now() - std::chrono::steady_clock::now();
std::vector<float> width_list; std::chrono::duration<float> postprocess_diff =
for (int i = 0; i < img_num; i++) { std::chrono::steady_clock::now() - std::chrono::steady_clock::now();
width_list.push_back(float(img_list[i].cols) / img_list[i].rows);
int img_num = img_list.size();
std::vector<float> width_list;
for (int i = 0; i < img_num; i++) {
width_list.push_back(float(img_list[i].cols) / img_list[i].rows);
}
std::vector<int> indices = Utility::argsort(width_list);
for (int beg_img_no = 0; beg_img_no < img_num;
beg_img_no += this->rec_batch_num_) {
auto preprocess_start = std::chrono::steady_clock::now();
int end_img_no = min(img_num, beg_img_no + this->rec_batch_num_);
float max_wh_ratio = 0;
for (int ino = beg_img_no; ino < end_img_no; ino++) {
int h = img_list[indices[ino]].rows;
int w = img_list[indices[ino]].cols;
float wh_ratio = w * 1.0 / h;
max_wh_ratio = max(max_wh_ratio, wh_ratio);
} }
std::vector<int> indices = Utility::argsort(width_list); int batch_width = 0;
std::vector<cv::Mat> norm_img_batch;
for (int beg_img_no = 0; beg_img_no < img_num; beg_img_no += this->rec_batch_num_) { for (int ino = beg_img_no; ino < end_img_no; ino++) {
auto preprocess_start = std::chrono::steady_clock::now(); cv::Mat srcimg;
int end_img_no = min(img_num, beg_img_no + this->rec_batch_num_); img_list[indices[ino]].copyTo(srcimg);
float max_wh_ratio = 0; cv::Mat resize_img;
for (int ino = beg_img_no; ino < end_img_no; ino ++) { this->resize_op_.Run(srcimg, resize_img, max_wh_ratio,
int h = img_list[indices[ino]].rows; this->use_tensorrt_);
int w = img_list[indices[ino]].cols; this->normalize_op_.Run(&resize_img, this->mean_, this->scale_,
float wh_ratio = w * 1.0 / h; this->is_scale_);
max_wh_ratio = max(max_wh_ratio, wh_ratio); norm_img_batch.push_back(resize_img);
} batch_width = max(resize_img.cols, batch_width);
std::vector<cv::Mat> norm_img_batch; }
for (int ino = beg_img_no; ino < end_img_no; ino ++) {
cv::Mat srcimg; std::vector<float> input(this->rec_batch_num_ * 3 * 32 * batch_width, 0.0f);
img_list[indices[ino]].copyTo(srcimg); this->permute_op_.Run(norm_img_batch, input.data());
cv::Mat resize_img; auto preprocess_end = std::chrono::steady_clock::now();
this->resize_op_.Run(srcimg, resize_img, max_wh_ratio, this->use_tensorrt_); preprocess_diff += preprocess_end - preprocess_start;
this->normalize_op_.Run(&resize_img, this->mean_, this->scale_, this->is_scale_);
norm_img_batch.push_back(resize_img); // Inference.
} auto input_names = this->predictor_->GetInputNames();
auto input_t = this->predictor_->GetInputHandle(input_names[0]);
int batch_width = int(ceilf(32 * max_wh_ratio)) - 1; input_t->Reshape({this->rec_batch_num_, 3, 32, batch_width});
std::vector<float> input(this->rec_batch_num_ * 3 * 32 * batch_width, 0.0f); auto inference_start = std::chrono::steady_clock::now();
this->permute_op_.Run(norm_img_batch, input.data()); input_t->CopyFromCpu(input.data());
auto preprocess_end = std::chrono::steady_clock::now(); this->predictor_->Run();
preprocess_diff += preprocess_end - preprocess_start;
std::vector<float> predict_batch;
// Inference. auto output_names = this->predictor_->GetOutputNames();
auto input_names = this->predictor_->GetInputNames(); auto output_t = this->predictor_->GetOutputHandle(output_names[0]);
auto input_t = this->predictor_->GetInputHandle(input_names[0]); auto predict_shape = output_t->shape();
input_t->Reshape({this->rec_batch_num_, 3, 32, batch_width});
auto inference_start = std::chrono::steady_clock::now(); int out_num = std::accumulate(predict_shape.begin(), predict_shape.end(), 1,
input_t->CopyFromCpu(input.data()); std::multiplies<int>());
this->predictor_->Run(); predict_batch.resize(out_num);
std::vector<float> predict_batch; output_t->CopyToCpu(predict_batch.data());
auto output_names = this->predictor_->GetOutputNames(); auto inference_end = std::chrono::steady_clock::now();
auto output_t = this->predictor_->GetOutputHandle(output_names[0]); inference_diff += inference_end - inference_start;
auto predict_shape = output_t->shape();
// ctc decode
int out_num = std::accumulate(predict_shape.begin(), predict_shape.end(), 1, auto postprocess_start = std::chrono::steady_clock::now();
std::multiplies<int>()); for (int m = 0; m < predict_shape[0]; m++) {
predict_batch.resize(out_num); std::vector<std::string> str_res;
int argmax_idx;
output_t->CopyToCpu(predict_batch.data()); int last_index = 0;
auto inference_end = std::chrono::steady_clock::now(); float score = 0.f;
inference_diff += inference_end - inference_start; int count = 0;
float max_value = 0.0f;
// ctc decode
auto postprocess_start = std::chrono::steady_clock::now(); for (int n = 0; n < predict_shape[1]; n++) {
for (int m = 0; m < predict_shape[0]; m++) { argmax_idx = int(Utility::argmax(
std::vector<std::string> str_res; &predict_batch[(m * predict_shape[1] + n) * predict_shape[2]],
int argmax_idx; &predict_batch[(m * predict_shape[1] + n + 1) * predict_shape[2]]));
int last_index = 0; max_value = float(*std::max_element(
float score = 0.f; &predict_batch[(m * predict_shape[1] + n) * predict_shape[2]],
int count = 0; &predict_batch[(m * predict_shape[1] + n + 1) * predict_shape[2]]));
float max_value = 0.0f;
if (argmax_idx > 0 && (!(n > 0 && argmax_idx == last_index))) {
for (int n = 0; n < predict_shape[1]; n++) { score += max_value;
argmax_idx = count += 1;
int(Utility::argmax(&predict_batch[(m * predict_shape[1] + n) * predict_shape[2]], str_res.push_back(label_list_[argmax_idx]);
&predict_batch[(m * predict_shape[1] + n + 1) * predict_shape[2]]));
max_value =
float(*std::max_element(&predict_batch[(m * predict_shape[1] + n) * predict_shape[2]],
&predict_batch[(m * predict_shape[1] + n + 1) * predict_shape[2]]));
if (argmax_idx > 0 && (!(n > 0 && argmax_idx == last_index))) {
score += max_value;
count += 1;
str_res.push_back(label_list_[argmax_idx]);
}
last_index = argmax_idx;
}
score /= count;
if (isnan(score))
continue;
for (int i = 0; i < str_res.size(); i++) {
std::cout << str_res[i];
}
std::cout << "\tscore: " << score << std::endl;
} }
auto postprocess_end = std::chrono::steady_clock::now(); last_index = argmax_idx;
postprocess_diff += postprocess_end - postprocess_start; }
score /= count;
if (isnan(score))
continue;
for (int i = 0; i < str_res.size(); i++) {
std::cout << str_res[i];
}
std::cout << "\tscore: " << score << std::endl;
} }
times->push_back(double(preprocess_diff.count() * 1000)); auto postprocess_end = std::chrono::steady_clock::now();
times->push_back(double(inference_diff.count() * 1000)); postprocess_diff += postprocess_end - postprocess_start;
times->push_back(double(postprocess_diff.count() * 1000)); }
times->push_back(double(preprocess_diff.count() * 1000));
times->push_back(double(inference_diff.count() * 1000));
times->push_back(double(postprocess_diff.count() * 1000));
} }
void CRNNRecognizer::LoadModel(const std::string &model_dir) { void CRNNRecognizer::LoadModel(const std::string &model_dir) {
// AnalysisConfig config; // AnalysisConfig config;
paddle_infer::Config config; paddle_infer::Config config;
...@@ -130,23 +137,17 @@ void CRNNRecognizer::LoadModel(const std::string &model_dir) { ...@@ -130,23 +137,17 @@ void CRNNRecognizer::LoadModel(const std::string &model_dir) {
if (this->precision_ == "fp16") { if (this->precision_ == "fp16") {
precision = paddle_infer::Config::Precision::kHalf; precision = paddle_infer::Config::Precision::kHalf;
} }
if (this->precision_ == "int8") { if (this->precision_ == "int8") {
precision = paddle_infer::Config::Precision::kInt8; precision = paddle_infer::Config::Precision::kInt8;
} }
config.EnableTensorRtEngine( config.EnableTensorRtEngine(1 << 20, 10, 3, precision, false, false);
1 << 20, 10, 3,
precision,
false, false);
std::map<std::string, std::vector<int>> min_input_shape = { std::map<std::string, std::vector<int>> min_input_shape = {
{"x", {1, 3, 32, 10}}, {"x", {1, 3, 32, 10}}, {"lstm_0.tmp_0", {10, 1, 96}}};
{"lstm_0.tmp_0", {10, 1, 96}}};
std::map<std::string, std::vector<int>> max_input_shape = { std::map<std::string, std::vector<int>> max_input_shape = {
{"x", {1, 3, 32, 2000}}, {"x", {1, 3, 32, 2000}}, {"lstm_0.tmp_0", {1000, 1, 96}}};
{"lstm_0.tmp_0", {1000, 1, 96}}};
std::map<std::string, std::vector<int>> opt_input_shape = { std::map<std::string, std::vector<int>> opt_input_shape = {
{"x", {1, 3, 32, 320}}, {"x", {1, 3, 32, 320}}, {"lstm_0.tmp_0", {25, 1, 96}}};
{"lstm_0.tmp_0", {25, 1, 96}}};
config.SetTRTDynamicShapeInfo(min_input_shape, max_input_shape, config.SetTRTDynamicShapeInfo(min_input_shape, max_input_shape,
opt_input_shape); opt_input_shape);
...@@ -168,7 +169,7 @@ void CRNNRecognizer::LoadModel(const std::string &model_dir) { ...@@ -168,7 +169,7 @@ void CRNNRecognizer::LoadModel(const std::string &model_dir) {
config.SwitchIrOptim(true); config.SwitchIrOptim(true);
config.EnableMemoryOptim(); config.EnableMemoryOptim();
// config.DisableGlogInfo(); // config.DisableGlogInfo();
this->predictor_ = CreatePredictor(config); this->predictor_ = CreatePredictor(config);
} }
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册