Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
weixin_41840029
PaddleOCR
提交
253c7d82
P
PaddleOCR
项目概览
weixin_41840029
/
PaddleOCR
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleOCR
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleOCR
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
253c7d82
编写于
2月 21, 2022
作者:
L
LDOUBLEV
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
benchmark
上级
ef1d80f0
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
476 addition
and
0 deletion
+476
-0
benchmark/analysis.py
benchmark/analysis.py
+346
-0
benchmark/readme.md
benchmark/readme.md
+30
-0
benchmark/run_benchmark_det.sh
benchmark/run_benchmark_det.sh
+61
-0
benchmark/run_det.sh
benchmark/run_det.sh
+39
-0
未找到文件。
benchmark/analysis.py
0 → 100644
浏览文件 @
253c7d82
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
argparse
import
json
import
os
import
re
import
traceback
def
parse_args
():
parser
=
argparse
.
ArgumentParser
(
description
=
__doc__
)
parser
.
add_argument
(
"--filename"
,
type
=
str
,
help
=
"The name of log which need to analysis."
)
parser
.
add_argument
(
"--log_with_profiler"
,
type
=
str
,
help
=
"The path of train log with profiler"
)
parser
.
add_argument
(
"--profiler_path"
,
type
=
str
,
help
=
"The path of profiler timeline log."
)
parser
.
add_argument
(
"--keyword"
,
type
=
str
,
help
=
"Keyword to specify analysis data"
)
parser
.
add_argument
(
"--separator"
,
type
=
str
,
default
=
None
,
help
=
"Separator of different field in log"
)
parser
.
add_argument
(
'--position'
,
type
=
int
,
default
=
None
,
help
=
'The position of data field'
)
parser
.
add_argument
(
'--range'
,
type
=
str
,
default
=
""
,
help
=
'The range of data field to intercept'
)
parser
.
add_argument
(
'--base_batch_size'
,
type
=
int
,
help
=
'base_batch size on gpu'
)
parser
.
add_argument
(
'--skip_steps'
,
type
=
int
,
default
=
0
,
help
=
'The number of steps to be skipped'
)
parser
.
add_argument
(
'--model_mode'
,
type
=
int
,
default
=-
1
,
help
=
'Analysis mode, default value is -1'
)
parser
.
add_argument
(
'--ips_unit'
,
type
=
str
,
default
=
None
,
help
=
'IPS unit'
)
parser
.
add_argument
(
'--model_name'
,
type
=
str
,
default
=
0
,
help
=
'training model_name, transformer_base'
)
parser
.
add_argument
(
'--mission_name'
,
type
=
str
,
default
=
0
,
help
=
'training mission name'
)
parser
.
add_argument
(
'--direction_id'
,
type
=
int
,
default
=
0
,
help
=
'training direction_id'
)
parser
.
add_argument
(
'--run_mode'
,
type
=
str
,
default
=
"sp"
,
help
=
'multi process or single process'
)
parser
.
add_argument
(
'--index'
,
type
=
int
,
default
=
1
,
help
=
'{1: speed, 2:mem, 3:profiler, 6:max_batch_size}'
)
parser
.
add_argument
(
'--gpu_num'
,
type
=
int
,
default
=
1
,
help
=
'nums of training gpus'
)
args
=
parser
.
parse_args
()
args
.
separator
=
None
if
args
.
separator
==
"None"
else
args
.
separator
return
args
def
_is_number
(
num
):
pattern
=
re
.
compile
(
r
'^[-+]?[-0-9]\d*\.\d*|[-+]?\.?[0-9]\d*$'
)
result
=
pattern
.
match
(
num
)
if
result
:
return
True
else
:
return
False
class
TimeAnalyzer
(
object
):
def
__init__
(
self
,
filename
,
keyword
=
None
,
separator
=
None
,
position
=
None
,
range
=
"-1"
):
if
filename
is
None
:
raise
Exception
(
"Please specify the filename!"
)
if
keyword
is
None
:
raise
Exception
(
"Please specify the keyword!"
)
self
.
filename
=
filename
self
.
keyword
=
keyword
self
.
separator
=
separator
self
.
position
=
position
self
.
range
=
range
self
.
records
=
None
self
.
_distil
()
def
_distil
(
self
):
self
.
records
=
[]
with
open
(
self
.
filename
,
"r"
)
as
f_object
:
lines
=
f_object
.
readlines
()
for
line
in
lines
:
if
self
.
keyword
not
in
line
:
continue
try
:
result
=
None
# Distil the string from a line.
line
=
line
.
strip
()
line_words
=
line
.
split
(
self
.
separator
)
if
self
.
separator
else
line
.
split
()
if
args
.
position
:
result
=
line_words
[
self
.
position
]
else
:
# Distil the string following the keyword.
for
i
in
range
(
len
(
line_words
)
-
1
):
if
line_words
[
i
]
==
self
.
keyword
:
result
=
line_words
[
i
+
1
]
break
# Distil the result from the picked string.
if
not
self
.
range
:
result
=
result
[
0
:]
elif
_is_number
(
self
.
range
):
result
=
result
[
0
:
int
(
self
.
range
)]
else
:
result
=
result
[
int
(
self
.
range
.
split
(
":"
)[
0
]):
int
(
self
.
range
.
split
(
":"
)[
1
])]
self
.
records
.
append
(
float
(
result
))
except
Exception
as
exc
:
print
(
"line is: {}; separator={}; position={}"
.
format
(
line
,
self
.
separator
,
self
.
position
))
print
(
"Extract {} records: separator={}; position={}"
.
format
(
len
(
self
.
records
),
self
.
separator
,
self
.
position
))
def
_get_fps
(
self
,
mode
,
batch_size
,
gpu_num
,
avg_of_records
,
run_mode
,
unit
=
None
):
if
mode
==
-
1
and
run_mode
==
'sp'
:
assert
unit
,
"Please set the unit when mode is -1."
fps
=
gpu_num
*
avg_of_records
elif
mode
==
-
1
and
run_mode
==
'mp'
:
assert
unit
,
"Please set the unit when mode is -1."
fps
=
gpu_num
*
avg_of_records
#temporarily, not used now
print
(
"------------this is mp"
)
elif
mode
==
0
:
# s/step -> samples/s
fps
=
(
batch_size
*
gpu_num
)
/
avg_of_records
unit
=
"samples/s"
elif
mode
==
1
:
# steps/s -> steps/s
fps
=
avg_of_records
unit
=
"steps/s"
elif
mode
==
2
:
# s/step -> steps/s
fps
=
1
/
avg_of_records
unit
=
"steps/s"
elif
mode
==
3
:
# steps/s -> samples/s
fps
=
batch_size
*
gpu_num
*
avg_of_records
unit
=
"samples/s"
elif
mode
==
4
:
# s/epoch -> s/epoch
fps
=
avg_of_records
unit
=
"s/epoch"
else
:
ValueError
(
"Unsupported analysis mode."
)
return
fps
,
unit
def
analysis
(
self
,
batch_size
,
gpu_num
=
1
,
skip_steps
=
0
,
mode
=-
1
,
run_mode
=
'sp'
,
unit
=
None
):
if
batch_size
<=
0
:
print
(
"base_batch_size should larger than 0."
)
return
0
,
''
if
len
(
self
.
records
)
<=
skip_steps
:
# to address the condition which item of log equals to skip_steps
print
(
"no records"
)
return
0
,
''
sum_of_records
=
0
sum_of_records_skipped
=
0
skip_min
=
self
.
records
[
skip_steps
]
skip_max
=
self
.
records
[
skip_steps
]
count
=
len
(
self
.
records
)
for
i
in
range
(
count
):
sum_of_records
+=
self
.
records
[
i
]
if
i
>=
skip_steps
:
sum_of_records_skipped
+=
self
.
records
[
i
]
if
self
.
records
[
i
]
<
skip_min
:
skip_min
=
self
.
records
[
i
]
if
self
.
records
[
i
]
>
skip_max
:
skip_max
=
self
.
records
[
i
]
avg_of_records
=
sum_of_records
/
float
(
count
)
avg_of_records_skipped
=
sum_of_records_skipped
/
float
(
count
-
skip_steps
)
fps
,
fps_unit
=
self
.
_get_fps
(
mode
,
batch_size
,
gpu_num
,
avg_of_records
,
run_mode
,
unit
)
fps_skipped
,
_
=
self
.
_get_fps
(
mode
,
batch_size
,
gpu_num
,
avg_of_records_skipped
,
run_mode
,
unit
)
if
mode
==
-
1
:
print
(
"average ips of %d steps, skip 0 step:"
%
count
)
print
(
"
\t
Avg: %.3f %s"
%
(
avg_of_records
,
fps_unit
))
print
(
"
\t
FPS: %.3f %s"
%
(
fps
,
fps_unit
))
if
skip_steps
>
0
:
print
(
"average ips of %d steps, skip %d steps:"
%
(
count
,
skip_steps
))
print
(
"
\t
Avg: %.3f %s"
%
(
avg_of_records_skipped
,
fps_unit
))
print
(
"
\t
Min: %.3f %s"
%
(
skip_min
,
fps_unit
))
print
(
"
\t
Max: %.3f %s"
%
(
skip_max
,
fps_unit
))
print
(
"
\t
FPS: %.3f %s"
%
(
fps_skipped
,
fps_unit
))
elif
mode
==
1
or
mode
==
3
:
print
(
"average latency of %d steps, skip 0 step:"
%
count
)
print
(
"
\t
Avg: %.3f steps/s"
%
avg_of_records
)
print
(
"
\t
FPS: %.3f %s"
%
(
fps
,
fps_unit
))
if
skip_steps
>
0
:
print
(
"average latency of %d steps, skip %d steps:"
%
(
count
,
skip_steps
))
print
(
"
\t
Avg: %.3f steps/s"
%
avg_of_records_skipped
)
print
(
"
\t
Min: %.3f steps/s"
%
skip_min
)
print
(
"
\t
Max: %.3f steps/s"
%
skip_max
)
print
(
"
\t
FPS: %.3f %s"
%
(
fps_skipped
,
fps_unit
))
elif
mode
==
0
or
mode
==
2
:
print
(
"average latency of %d steps, skip 0 step:"
%
count
)
print
(
"
\t
Avg: %.3f s/step"
%
avg_of_records
)
print
(
"
\t
FPS: %.3f %s"
%
(
fps
,
fps_unit
))
if
skip_steps
>
0
:
print
(
"average latency of %d steps, skip %d steps:"
%
(
count
,
skip_steps
))
print
(
"
\t
Avg: %.3f s/step"
%
avg_of_records_skipped
)
print
(
"
\t
Min: %.3f s/step"
%
skip_min
)
print
(
"
\t
Max: %.3f s/step"
%
skip_max
)
print
(
"
\t
FPS: %.3f %s"
%
(
fps_skipped
,
fps_unit
))
return
round
(
fps_skipped
,
3
),
fps_unit
if
__name__
==
"__main__"
:
args
=
parse_args
()
run_info
=
dict
()
run_info
[
"log_file"
]
=
args
.
filename
run_info
[
"model_name"
]
=
args
.
model_name
run_info
[
"mission_name"
]
=
args
.
mission_name
run_info
[
"direction_id"
]
=
args
.
direction_id
run_info
[
"run_mode"
]
=
args
.
run_mode
run_info
[
"index"
]
=
args
.
index
run_info
[
"gpu_num"
]
=
args
.
gpu_num
run_info
[
"FINAL_RESULT"
]
=
0
run_info
[
"JOB_FAIL_FLAG"
]
=
0
try
:
if
args
.
index
==
1
:
if
args
.
gpu_num
==
1
:
run_info
[
"log_with_profiler"
]
=
args
.
log_with_profiler
run_info
[
"profiler_path"
]
=
args
.
profiler_path
analyzer
=
TimeAnalyzer
(
args
.
filename
,
args
.
keyword
,
args
.
separator
,
args
.
position
,
args
.
range
)
run_info
[
"FINAL_RESULT"
],
run_info
[
"UNIT"
]
=
analyzer
.
analysis
(
batch_size
=
args
.
base_batch_size
,
gpu_num
=
args
.
gpu_num
,
skip_steps
=
args
.
skip_steps
,
mode
=
args
.
model_mode
,
run_mode
=
args
.
run_mode
,
unit
=
args
.
ips_unit
)
try
:
if
int
(
os
.
getenv
(
'job_fail_flag'
))
==
1
or
int
(
run_info
[
"FINAL_RESULT"
])
==
0
:
run_info
[
"JOB_FAIL_FLAG"
]
=
1
except
:
pass
elif
args
.
index
==
3
:
run_info
[
"FINAL_RESULT"
]
=
{}
records_fo_total
=
TimeAnalyzer
(
args
.
filename
,
'Framework overhead'
,
None
,
3
,
''
).
records
records_fo_ratio
=
TimeAnalyzer
(
args
.
filename
,
'Framework overhead'
,
None
,
5
).
records
records_ct_total
=
TimeAnalyzer
(
args
.
filename
,
'Computation time'
,
None
,
3
,
''
).
records
records_gm_total
=
TimeAnalyzer
(
args
.
filename
,
'GpuMemcpy Calls'
,
None
,
4
,
''
).
records
records_gm_ratio
=
TimeAnalyzer
(
args
.
filename
,
'GpuMemcpy Calls'
,
None
,
6
).
records
records_gmas_total
=
TimeAnalyzer
(
args
.
filename
,
'GpuMemcpyAsync Calls'
,
None
,
4
,
''
).
records
records_gms_total
=
TimeAnalyzer
(
args
.
filename
,
'GpuMemcpySync Calls'
,
None
,
4
,
''
).
records
run_info
[
"FINAL_RESULT"
][
"Framework_Total"
]
=
records_fo_total
[
0
]
if
records_fo_total
else
0
run_info
[
"FINAL_RESULT"
][
"Framework_Ratio"
]
=
records_fo_ratio
[
0
]
if
records_fo_ratio
else
0
run_info
[
"FINAL_RESULT"
][
"ComputationTime_Total"
]
=
records_ct_total
[
0
]
if
records_ct_total
else
0
run_info
[
"FINAL_RESULT"
][
"GpuMemcpy_Total"
]
=
records_gm_total
[
0
]
if
records_gm_total
else
0
run_info
[
"FINAL_RESULT"
][
"GpuMemcpy_Ratio"
]
=
records_gm_ratio
[
0
]
if
records_gm_ratio
else
0
run_info
[
"FINAL_RESULT"
][
"GpuMemcpyAsync_Total"
]
=
records_gmas_total
[
0
]
if
records_gmas_total
else
0
run_info
[
"FINAL_RESULT"
][
"GpuMemcpySync_Total"
]
=
records_gms_total
[
0
]
if
records_gms_total
else
0
else
:
print
(
"Not support!"
)
except
Exception
:
traceback
.
print_exc
()
print
(
"{}"
.
format
(
json
.
dumps
(
run_info
))
)
# it's required, for the log file path insert to the database
benchmark/readme.md
0 → 100644
浏览文件 @
253c7d82
# PaddleOCR DB/EAST/PSE 算法训练benchmark测试
PaddleOCR/benchmark目录下的文件用于获取并分析训练日志。
训练采用icdar2015数据集,包括1000张训练图像和500张测试图像。模型配置采用resnet18_vd作为backbone,分别训练batch_size=8和batch_size=16的情况。
## 运行训练benchmark
benchmark/run_det.sh 中包含了三个过程:
-
安装依赖
-
下载数据
-
执行训练
-
日志分析获取IPS
在执行训练部分,会执行单机单卡(默认0号卡)单机多卡训练,并分别执行batch_size=8和batch_size=16的情况。所以执行完后,每种模型会得到4个日志文件。
run_det.sh 执行方式如下:
```
# cd PaddleOCR/
bash benchmark/run_det.sh
```
以DB为例,将得到四个日志文件,如下:
```
det_res18_db_v2.0_sp_bs16_fp32_1
det_res18_db_v2.0_sp_bs8_fp32_1
det_res18_db_v2.0_mp_bs16_fp32_1
det_res18_db_v2.0_mp_bs8_fp32_1
```
benchmark/run_benchmark_det.sh
0 → 100644
浏览文件 @
253c7d82
#!/usr/bin/env bash
set
-xe
# 运行示例:CUDA_VISIBLE_DEVICES=0 bash run_benchmark.sh ${run_mode} ${bs_item} ${fp_item} 500 ${model_mode}
# 参数说明
function
_set_params
(){
run_mode
=
${
1
:-
"sp"
}
# 单卡sp|多卡mp
batch_size
=
${
2
:-
"64"
}
fp_item
=
${
3
:-
"fp32"
}
# fp32|fp16
max_epoch
=
${
4
:-
"10"
}
# 可选,如果需要修改代码提前中断
model_item
=
${
5
:-
"model_item"
}
run_log_path
=
${
TRAIN_LOG_DIR
:-
$(
pwd
)
}
# TRAIN_LOG_DIR 后续QA设置该参数
# 日志解析所需参数
base_batch_size
=
${
batch_size
}
mission_name
=
"OCR"
direction_id
=
"0"
ips_unit
=
"images/sec"
skip_steps
=
2
# 解析日志,有些模型前几个step耗时长,需要跳过 (必填)
keyword
=
"ips:"
# 解析日志,筛选出数据所在行的关键字 (必填)
index
=
"1"
model_name
=
${
model_item
}
_bs
${
batch_size
}
_
${
fp_item
}
# model_item 用于yml文件名匹配,model_name 用于数据入库前端展示
# 以下不用修改
device
=
${
CUDA_VISIBLE_DEVICES
//,/
}
arr
=(
${
device
}
)
num_gpu_devices
=
${#
arr
[*]
}
log_file
=
${
run_log_path
}
/
${
model_item
}
_
${
run_mode
}
_bs
${
batch_size
}
_
${
fp_item
}
_
${
num_gpu_devices
}
}
function
_train
(){
echo
"Train on
${
num_gpu_devices
}
GPUs"
echo
"current CUDA_VISIBLE_DEVICES=
$CUDA_VISIBLE_DEVICES
, gpus=
$num_gpu_devices
, batch_size=
$batch_size
"
train_cmd
=
"-c configs/det/
${
model_item
}
.yml -o Train.loader.batch_size_per_card=
${
batch_size
}
Global.epoch_num=
${
max_epoch
}
Global.eval_batch_step=[0,20000] Global.print_batch_step=2"
case
${
run_mode
}
in
sp
)
train_cmd
=
"python tools/train.py "
${
train_cmd
}
""
;;
mp
)
train_cmd
=
"python -m paddle.distributed.launch --log_dir=./mylog --gpus=
$CUDA_VISIBLE_DEVICES
tools/train.py
${
train_cmd
}
"
;;
*
)
echo
"choose run_mode(sp or mp)"
;
exit
1
;
esac
# 以下不用修改
timeout
15m
${
train_cmd
}
>
${
log_file
}
2>&1
if
[
$?
-ne
0
]
;
then
echo
-e
"
${
model_name
}
, FAIL"
export
job_fail_flag
=
1
else
echo
-e
"
${
model_name
}
, SUCCESS"
export
job_fail_flag
=
0
fi
if
[
$run_mode
=
"mp"
-a
-d
mylog
]
;
then
rm
${
log_file
}
cp
mylog/workerlog.0
${
log_file
}
fi
}
source
${
BENCHMARK_ROOT
}
/scripts/run_model.sh
# 在该脚本中会对符合benchmark规范的log使用analysis.py 脚本进行性能数据解析;该脚本在连调时可从benchmark repo中下载https://github.com/PaddlePaddle/benchmark/blob/master/scripts/run_model.sh;如果不联调只想要产出训练log可以注掉本行,提交时需打开
_set_params
$@
#_train # 如果只想产出训练log,不解析,可取消注释
_run
# 该函数在run_model.sh中,执行时会调用_train; 如果不联调只想要产出训练log可以注掉本行,提交时需打开
benchmark/run_det.sh
0 → 100644
浏览文件 @
253c7d82
#!/bin/bash
# 提供可稳定复现性能的脚本,默认在标准docker环境内py37执行: paddlepaddle/paddle:latest-gpu-cuda10.1-cudnn7 paddle=2.1.2 py=37
# 执行目录: ./PaddleOCR
# 1 安装该模型需要的依赖 (如需开启优化策略请注明)
log_path
=
${
LOG_PATH_INDEX_DIR
:-
$(
pwd
)
}
python
-m
pip
install
-r
requirements.txt
# 2 拷贝该模型需要数据、预训练模型
wget
-P
./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/icdar2015.tar
&&
cd
train_data
&&
tar
xf icdar2015.tar
&&
cd
../
wget
-P
./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vd_pretrained.pdparams
wget
-P
./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet18_vd_pretrained.pdparams
wget
-P
./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vd_ssld_pretrained.pdparams
# 3 批量运行(如不方便批量,1,2需放到单个模型中)
model_mode_list
=(
det_res18_db_v2.0 det_r50_vd_east det_r50_vd_pse
)
fp_item_list
=(
fp32
)
for
model_mode
in
${
model_mode_list
[@]
}
;
do
for
fp_item
in
${
fp_item_list
[@]
}
;
do
if
[
${
model_mode
}
==
"det_r50_vd_east"
]
;
then
bs_list
=(
16
)
else
bs_list
=(
8 16
)
fi
for
bs_item
in
${
bs_list
[@]
}
;
do
echo
"index is speed, 1gpus, begin,
${
model_name
}
"
run_mode
=
sp
log_name
=
ocr_
${
model_mode
}
_bs
${
bs_item
}
_
${
fp_item
}
_
${
run_mode
}
CUDA_VISIBLE_DEVICES
=
0 bash benchmark/run_benchmark_det.sh
${
run_mode
}
${
bs_item
}
${
fp_item
}
1
${
model_mode
}
|
tee
${
log_path
}
/
${
log_name
}
_speed_1gpus 2>&1
# (5min)
sleep
60
echo
"index is speed, 8gpus, run_mode is multi_process, begin,
${
model_name
}
"
run_mode
=
mp
log_name
=
ocr_
${
model_mode
}
_bs
${
bs_item
}
_
${
fp_item
}
_
${
run_mode
}
CUDA_VISIBLE_DEVICES
=
0,1,2,3,4,5,6,7 bash benchmark/run_benchmark_det.sh
${
run_mode
}
${
bs_item
}
${
fp_item
}
2
${
model_mode
}
|
tee
${
log_path
}
/
${
log_name
}
_speed_8gpus8p 2>&1
sleep
60
done
done
done
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录