提交 2094a40c 编写于 作者: littletomatodonkey's avatar littletomatodonkey

add how to finetune doc

上级 a1cf9100
# 模型微调
## 1. 模型微调背景与意义
PaddleOCR提供的PP-OCR系列模型在通用场景中性能优异,能够解决绝大多数情况下的检测与识别问题。在垂类场景中,如果希望获取更优的模型效果,可以通过模型微调的方法,进一步提升PP-OCR系列检测与识别模型的精度。
本文主要介绍文本检测与识别模型在模型微调时的一些注意事项,最终希望您在自己的场景中,通过模型微调,可以获取精度更高的文本检测与识别模型。
本文核心要点如下所示。
1. PP-OCR提供的预训练模型有较好的泛化能力
2. 加入少量真实数据(检测任务>=500张, 识别任务>=5000张),会大幅提升垂类场景的检测与识别效果
3. 在模型微调时,加入真实通用场景数据,可以进一步提升模型精度与泛化性能
4. 在图像检测任务中,增大图像的预测尺度,能够进一步提升较小文字区域的检测效果
5. 在模型微调时,需要适当调整超参数(学习率,batch size最为重要),以获得更优的微调效果。
更多详细内容,请参考第2章与第3章。
## 2. 文本检测模型微调
### 2.1 数据选择
* 数据量:建议至少准备500张的文本检测数据集用于模型微调。
* 数据标注:单行文本标注格式,建议标注的检测框与实际语义内容一致。如在火车票场景中,姓氏与名字可能离得较远,但是它们在语义上属于同一个检测字段,这里也需要将整个姓名标注为1个检测框。
### 2.2 模型选择
建议选择PP-OCRv2模型(配置文件:[ch_PP-OCRv2_det_student.yml](../../configs/det/ch_PP-OCRv2/ch_PP-OCRv2_det_student.yml),预训练模型:[ch_PP-OCRv2_det_distill_train.tar](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_distill_train.tar))进行微调,其精度与泛化性能是目前提供的最优预训练模型。
更多PP-OCR系列模型,请参考[PaddleOCR 首页说明文档](../../README_ch.md)
注意:在使用上述预训练模型的时候,由于保存的模型中包含教师模型,因此需要将其中的学生模型单独提取出来,再加载学生模型即可进行模型微调。
```python
import paddle
# 加载完整的检测预训练模型
a = paddle.load("ch_PP-OCRv2_det_distill_train/best_accuracy.pdparams")
# 提取学生模型的参数
b = {k[len("student_model."):]: a[k] for k in a if "student_model." in k}
# 保存模型,用于后续模型微调
paddle.save(b, "ch_PP-OCRv2_det_student.pdparams")
```
### 2.3 训练超参选择
在模型微调的时候,最重要的超参就是预训练模型路径`pretrained_model`, 学习率`learning_rate``batch_size`,部分配置文件如下所示。
```yaml
Global:
pretrained_model: ./pretrain_models/student.pdparams # 预训练模型路径
Optimizer:
lr:
name: Cosine
learning_rate: 0.001 # 学习率
warmup_epoch: 2
regularizer:
name: 'L2'
factor: 0
Train:
loader:
shuffle: True
drop_last: False
batch_size_per_card: 8 # 单卡batch size
num_workers: 4
```
上述配置文件中,首先需要将`pretrained_model`字段指定为2.2章节中提取出来的`ch_PP-OCRv2_det_student.pdparams`文件路径。
PaddleOCR提供的配置文件事在8卡训练(相当于总的batch size是`8*8=64`)、且没有加载预训练模型情况下的配置文件,因此您的场景中,学习率与总的batch size需要对应线性调整,例如
* 如果您的场景中是单卡训练,单卡batch_size=8,则总的batch_size=8,建议将学习率调整为`1e-4`左右。
* 如果您的场景中是单卡训练,由于显存限制,只能设置单卡batch_size=4,则总的batch_size=4,建议将学习率调整为`5e-5`左右。
### 2.4 预测超参选择
对训练好的模型导出并进行推理时,可以通过进一步调整预测的图像尺度,来提升小面积文本的检测效果,下面是DBNet推理时的一些超参数,可以通过适当调整,提升效果。
| 参数名称 | 类型 | 默认值 | 含义 |
| :--: | :--: | :--: | :--: |
| det_db_thresh | float | 0.3 | DB输出的概率图中,得分大于该阈值的像素点才会被认为是文字像素点 |
| det_db_box_thresh | float | 0.6 | 检测结果边框内,所有像素点的平均得分大于该阈值时,该结果会被认为是文字区域 |
| det_db_unclip_ratio | float | 1.5 | `Vatti clipping`算法的扩张系数,使用该方法对文字区域进行扩张 |
| max_batch_size | int | 10 | 预测的batch size |
| use_dilation | bool | False | 是否对分割结果进行膨胀以获取更优检测效果 |
| det_db_score_mode | str | "fast" | DB的检测结果得分计算方法,支持`fast``slow``fast`是根据polygon的外接矩形边框内的所有像素计算平均得分,`slow`是根据原始polygon内的所有像素计算平均得分,计算速度相对较慢一些,但是更加准确一些。 |
更多关于推理方法的介绍可以参考[Paddle Inference推理教程](./inference.md)
## 3. 文本识别模型微调
### 2.1 数据选择
* 数据量:不更换字典的情况下,建议至少准备5000张的文本识别数据集用于模型微调;如果更换了字典(不建议),需要的数量更多。
* 数据分布:建议分布与实测场景尽量一致。如果实测场景包含大量短文本,则训练数据中建议也包含较多短文本,如果实测场景对于空格识别效果要求较高,则训练数据中建议也包含较多带空格的文本内容。
* 通用中英文数据:在训练的时候,可以在训练集中添加通用真实数据(如在不更换字典的微调场景中,建议添加LSVT、RCTW、MTWI等真实数据),进一步提升模型的泛化性能。
### 2.2 模型选择
建议选择PP-OCRv2模型(配置文件:[ch_PP-OCRv2_rec_distillation.yml](../../configs/rec/ch_PP-OCRv2/ch_PP-OCRv2_rec_distillation.yml),预训练模型:[ch_PP-OCRv2_rec_train.tar](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_train.tar))进行微调,其精度与泛化性能是目前提供的最优预训练模型。
更多PP-OCR系列,模型请参考[PaddleOCR 首页说明文档](../../README_ch.md)
### 3.3 训练超参选择
与文本检测任务微调相同,在识别模型微调的时候,最重要的超参就是预训练模型路径`pretrained_model`, 学习率`learning_rate``batch_size`,部分默认配置文件如下所示。
```yaml
Global:
pretrained_model: # 预训练模型路径
Optimizer:
lr:
name: Piecewise
decay_epochs : [700, 800]
values : [0.001, 0.0001] # 学习率
warmup_epoch: 5
regularizer:
name: 'L2'
factor: 0
Train:
dataset:
name: SimpleDataSet
data_dir: ./train_data/
label_file_list:
- ./train_data/train_list.txt
ratio_list: [1.0] # 采样比例,默认值是[1.0]
loader:
shuffle: True
drop_last: False
batch_size_per_card: 128 # 单卡batch size
num_workers: 8
```
上述配置文件中,首先需要将`pretrained_model`字段指定为2.2章节中解压得到的`ch_PP-OCRv2_rec_train/best_accuracy.pdparams`文件路径。
PaddleOCR提供的配置文件事在8卡训练(相当于总的batch size是`8*128=1024`)、且没有加载预训练模型情况下的配置文件,因此您的场景中,学习率与总的batch size需要对应线性调整,例如:
* 如果您的场景中是单卡训练,单卡batch_size=128,则总的batch_size=128,在加载预训练模型的情况下,建议将学习率调整为`[1e-4, 2e-5]`左右(piecewise学习率策略,需设置2个值,下同)。
* 如果您的场景中是单卡训练,因为显存限制,只能设置单卡batch_size=64,则总的batch_size=64,在加载预训练模型的情况下,建议将学习率调整为`[5e-5, 1e-5]`左右。
如果有通用真实场景数据加进来,建议每个epoch中,垂类场景数据与真实场景的数据量保持在1:1左右。
比如:您自己的垂类场景识别数据量为1W,数据标签文件为`vertical.txt`,收集到的通用场景识别数据量为10W,数据标签文件为`general.txt`
那么,可以设置`label_file_list``ratio_list`参数如下所示。每个epoch中,`vertical.txt`中会进行全采样(采样比例为1.0),包含1W条数据;`general.txt`中会按照0.1的采样比例进行采样,包含`10W*0.1=1W`条数据,最终二者的比例为`1:1`
```yaml
Train:
dataset:
name: SimpleDataSet
data_dir: ./train_data/
label_file_list:
- vertical.txt
- general.txt
ratio_list: [1.0, 0.1]
```
......@@ -36,6 +36,8 @@ inference 模型(`paddle.jit.save`保存的模型)
- [六、参数解释](#参数解释)
- [七、FAQ](#FAQ)
<a name="训练模型转inference模型"></a>
## 一、训练模型转inference模型
......@@ -520,3 +522,9 @@ PSE算法相关参数如下
| label_list | list | ['0', '180'] | class id对应的角度值 |
| cls_batch_num | int | 6 | 方向分类器预测的batch size |
| cls_thresh | float | 0.9 | 预测阈值,模型预测结果为180度,且得分大于该阈值时,认为最终预测结果为180度,需要翻转 |
# 七、FAQ
* 如果是使用paddle2.0之前版本的代码导出的`inference模型`,则其文件名为`model``params`,分别对应paddle2.0或者之后版本导出的`inference.pdmodel``inference.pdiparams`
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册