Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
weixin_41840029
PaddleOCR
提交
1ae37919
P
PaddleOCR
项目概览
weixin_41840029
/
PaddleOCR
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleOCR
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleOCR
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
1ae37919
编写于
11月 05, 2020
作者:
D
dyning
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
trans to paddle-rc
上级
fa675f89
变更
18
隐藏空白更改
内联
并排
Showing
18 changed file
with
180 addition
and
138 deletion
+180
-138
configs/det/bak/det_r50_vd_db.yml
configs/det/bak/det_r50_vd_db.yml
+0
-0
configs/rec/bak/rec_mv3_none_bilstm_ctc_simple.yml
configs/rec/bak/rec_mv3_none_bilstm_ctc_simple.yml
+0
-0
configs/rec/bak/rec_r34_vd_none_bilstm_ctc.yml
configs/rec/bak/rec_r34_vd_none_bilstm_ctc.yml
+0
-0
configs/rec/bak/rec_r34_vd_none_none_ctc.yml
configs/rec/bak/rec_r34_vd_none_none_ctc.yml
+0
-0
ppocr/data/__init__.py
ppocr/data/__init__.py
+13
-10
ppocr/data/lmdb_dataset.py
ppocr/data/lmdb_dataset.py
+10
-22
ppocr/data/simple_dataset.py
ppocr/data/simple_dataset.py
+13
-14
ppocr/modeling/backbones/det_mobilenet_v3.py
ppocr/modeling/backbones/det_mobilenet_v3.py
+7
-8
ppocr/modeling/backbones/rec_mobilenet_v3.py
ppocr/modeling/backbones/rec_mobilenet_v3.py
+1
-1
ppocr/modeling/heads/det_db_head.py
ppocr/modeling/heads/det_db_head.py
+5
-5
ppocr/modeling/necks/db_fpn.py
ppocr/modeling/necks/db_fpn.py
+15
-15
ppocr/optimizer/__init__.py
ppocr/optimizer/__init__.py
+1
-3
ppocr/optimizer/learning_rate.py
ppocr/optimizer/learning_rate.py
+1
-1
ppocr/utils/logging.py
ppocr/utils/logging.py
+0
-1
ppocr/utils/save_load.py
ppocr/utils/save_load.py
+4
-12
tools/export_model.py
tools/export_model.py
+76
-0
tools/program.py
tools/program.py
+16
-20
tools/train.py
tools/train.py
+18
-26
未找到文件。
configs/det/det_r50_vd_db.yml
→
configs/det/
bak/
det_r50_vd_db.yml
浏览文件 @
1ae37919
文件已移动
configs/rec/rec_mv3_none_bilstm_ctc_simple.yml
→
configs/rec/
bak/
rec_mv3_none_bilstm_ctc_simple.yml
浏览文件 @
1ae37919
文件已移动
configs/rec/rec_r34_vd_none_bilstm_ctc.yml
→
configs/rec/
bak/
rec_r34_vd_none_bilstm_ctc.yml
浏览文件 @
1ae37919
文件已移动
configs/rec/rec_r34_vd_none_none_ctc.yml
→
configs/rec/
bak/
rec_r34_vd_none_none_ctc.yml
浏览文件 @
1ae37919
文件已移动
ppocr/data/__init__.py
浏览文件 @
1ae37919
...
...
@@ -37,6 +37,7 @@ from ppocr.data.lmdb_dataset import LMDBDateSet
__all__
=
[
'build_dataloader'
,
'transform'
,
'create_operators'
]
def
term_mp
(
sig_num
,
frame
):
""" kill all child processes
"""
...
...
@@ -45,24 +46,27 @@ def term_mp(sig_num, frame):
print
(
"main proc {} exit, kill process group "
"{}"
.
format
(
pid
,
pgid
))
os
.
killpg
(
pgid
,
signal
.
SIGKILL
)
signal
.
signal
(
signal
.
SIGINT
,
term_mp
)
signal
.
signal
(
signal
.
SIGTERM
,
term_mp
)
def
build_dataloader
(
config
,
mode
,
device
):
def
build_dataloader
(
config
,
mode
,
device
,
logger
):
config
=
copy
.
deepcopy
(
config
)
support_dict
=
[
'SimpleDataSet'
,
'LMDBDateSet'
]
module_name
=
config
[
mode
][
'dataset'
][
'name'
]
assert
module_name
in
support_dict
,
Exception
(
'DataSet only support {}'
.
format
(
support_dict
))
assert
mode
in
[
'Train'
,
'Eval'
,
'Test'
],
"Mode should be Train, Eval or Test."
dataset
=
eval
(
module_name
)(
config
,
mode
)
assert
mode
in
[
'Train'
,
'Eval'
,
'Test'
],
"Mode should be Train, Eval or Test."
dataset
=
eval
(
module_name
)(
config
,
mode
,
logger
)
loader_config
=
config
[
mode
][
'loader'
]
batch_size
=
loader_config
[
'batch_size_per_card'
]
drop_last
=
loader_config
[
'drop_last'
]
num_workers
=
loader_config
[
'num_workers'
]
if
mode
==
"Train"
:
#Distribute data to multiple cards
batch_sampler
=
DistributedBatchSampler
(
...
...
@@ -76,14 +80,13 @@ def build_dataloader(config, mode, device):
dataset
=
dataset
,
batch_size
=
batch_size
,
shuffle
=
False
,
drop_last
=
drop_last
)
drop_last
=
drop_last
)
data_loader
=
DataLoader
(
dataset
=
dataset
,
batch_sampler
=
batch_sampler
,
places
=
device
,
num_workers
=
num_workers
,
return_list
=
True
)
return
data_loader
#return data_loader, _dataset.info_dict
\ No newline at end of file
ppocr/data/lmdb_dataset.py
浏览文件 @
1ae37919
...
...
@@ -22,37 +22,26 @@ import lmdb
import
cv2
from
.imaug
import
transform
,
create_operators
from
ppocr.utils.logging
import
get_logger
logger
=
get_logger
()
class
LMDBDateSet
(
Dataset
):
def
__init__
(
self
,
config
,
mode
):
def
__init__
(
self
,
config
,
mode
,
logger
):
super
(
LMDBDateSet
,
self
).
__init__
()
global_config
=
config
[
'Global'
]
dataset_config
=
config
[
mode
][
'dataset'
]
loader_config
=
config
[
mode
][
'loader'
]
batch_size
=
loader_config
[
'batch_size_per_card'
]
data_dir
=
dataset_config
[
'data_dir'
]
self
.
do_shuffle
=
loader_config
[
'shuffle'
]
self
.
lmdb_sets
=
self
.
load_hierarchical_lmdb_dataset
(
data_dir
)
logger
.
info
(
"Initialize indexs of datasets:%s"
%
data_dir
)
self
.
data_idx_order_list
=
self
.
dataset_traversal
()
if
self
.
do_shuffle
:
np
.
random
.
shuffle
(
self
.
data_idx_order_list
)
self
.
ops
=
create_operators
(
dataset_config
[
'transforms'
],
global_config
)
# # for rec
# character = ''
# for op in self.ops:
# if hasattr(op, 'character'):
# character = getattr(op, 'character')
# self.info_dict = {'character': character}
def
load_hierarchical_lmdb_dataset
(
self
,
data_dir
):
lmdb_sets
=
{}
dataset_idx
=
0
...
...
@@ -71,7 +60,7 @@ class LMDBDateSet(Dataset):
"txn"
:
txn
,
"num_samples"
:
num_samples
}
dataset_idx
+=
1
return
lmdb_sets
def
dataset_traversal
(
self
):
lmdb_num
=
len
(
self
.
lmdb_sets
)
total_sample_num
=
0
...
...
@@ -88,7 +77,7 @@ class LMDBDateSet(Dataset):
data_idx_order_list
[
beg_idx
:
end_idx
,
1
]
+=
1
beg_idx
=
beg_idx
+
tmp_sample_num
return
data_idx_order_list
def
get_img_data
(
self
,
value
):
"""get_img_data"""
if
not
value
:
...
...
@@ -110,15 +99,15 @@ class LMDBDateSet(Dataset):
img_key
=
'image-%09d'
.
encode
()
%
index
imgbuf
=
txn
.
get
(
img_key
)
return
imgbuf
,
label
def
__getitem__
(
self
,
idx
):
lmdb_idx
,
file_idx
=
self
.
data_idx_order_list
[
idx
]
lmdb_idx
=
int
(
lmdb_idx
)
file_idx
=
int
(
file_idx
)
sample_info
=
self
.
get_lmdb_sample_info
(
self
.
lmdb_sets
[
lmdb_idx
][
'txn'
],
file_idx
)
sample_info
=
self
.
get_lmdb_sample_info
(
self
.
lmdb_sets
[
lmdb_idx
][
'txn'
],
file_idx
)
if
sample_info
is
None
:
return
self
.
__getitem__
(
np
.
random
.
randint
(
self
.
__len__
()))
return
self
.
__getitem__
(
np
.
random
.
randint
(
self
.
__len__
()))
img
,
label
=
sample_info
data
=
{
'image'
:
img
,
'label'
:
label
}
outs
=
transform
(
data
,
self
.
ops
)
...
...
@@ -128,4 +117,3 @@ class LMDBDateSet(Dataset):
def
__len__
(
self
):
return
self
.
data_idx_order_list
.
shape
[
0
]
ppocr/data/simple_dataset.py
浏览文件 @
1ae37919
...
...
@@ -20,18 +20,17 @@ from paddle.io import Dataset
import
time
from
.imaug
import
transform
,
create_operators
from
ppocr.utils.logging
import
get_logger
logger
=
get_logger
()
class
SimpleDataSet
(
Dataset
):
def
__init__
(
self
,
config
,
mode
):
def
__init__
(
self
,
config
,
mode
,
logger
):
super
(
SimpleDataSet
,
self
).
__init__
()
global_config
=
config
[
'Global'
]
dataset_config
=
config
[
mode
][
'dataset'
]
loader_config
=
config
[
mode
][
'loader'
]
batch_size
=
loader_config
[
'batch_size_per_card'
]
self
.
delimiter
=
dataset_config
.
get
(
'delimiter'
,
'
\t
'
)
label_file_list
=
dataset_config
.
pop
(
'label_file_list'
)
data_source_num
=
len
(
label_file_list
)
...
...
@@ -39,19 +38,21 @@ class SimpleDataSet(Dataset):
ratio_list
=
[
1.0
]
else
:
ratio_list
=
dataset_config
.
pop
(
'ratio_list'
)
assert
sum
(
ratio_list
)
==
1
,
"The sum of the ratio_list should be 1."
assert
len
(
ratio_list
)
==
data_source_num
,
"The length of ratio_list should be the same as the file_list."
assert
len
(
ratio_list
)
==
data_source_num
,
"The length of ratio_list should be the same as the file_list."
self
.
data_dir
=
dataset_config
[
'data_dir'
]
self
.
do_shuffle
=
loader_config
[
'shuffle'
]
logger
.
info
(
"Initialize indexs of datasets:%s"
%
label_file_list
)
self
.
data_lines_list
,
data_num_list
=
self
.
get_image_info_list
(
label_file_list
)
self
.
data_idx_order_list
=
self
.
dataset_traversal
(
data_num_list
,
ratio_list
,
batch_size
)
self
.
shuffle_data_random
()
self
.
ops
=
create_operators
(
dataset_config
[
'transforms'
],
global_config
)
def
get_image_info_list
(
self
,
file_list
):
...
...
@@ -65,7 +66,7 @@ class SimpleDataSet(Dataset):
data_lines_list
.
append
(
lines
)
data_num_list
.
append
(
len
(
lines
))
return
data_lines_list
,
data_num_list
def
dataset_traversal
(
self
,
data_num_list
,
ratio_list
,
batch_size
):
select_num_list
=
[]
dataset_num
=
len
(
data_num_list
)
...
...
@@ -87,8 +88,7 @@ class SimpleDataSet(Dataset):
cur_index
=
cur_index_sets
[
dataset_idx
]
if
cur_index
>=
data_num_list
[
dataset_idx
]:
break
data_idx_order_list
.
append
((
dataset_idx
,
cur_index
))
data_idx_order_list
.
append
((
dataset_idx
,
cur_index
))
cur_index_sets
[
dataset_idx
]
+=
1
if
finish_read_num
==
dataset_num
:
break
...
...
@@ -99,7 +99,7 @@ class SimpleDataSet(Dataset):
for
dno
in
range
(
len
(
self
.
data_lines_list
)):
random
.
shuffle
(
self
.
data_lines_list
[
dno
])
return
def
__getitem__
(
self
,
idx
):
dataset_idx
,
file_idx
=
self
.
data_idx_order_list
[
idx
]
data_line
=
self
.
data_lines_list
[
dataset_idx
][
file_idx
]
...
...
@@ -119,4 +119,3 @@ class SimpleDataSet(Dataset):
def
__len__
(
self
):
return
len
(
self
.
data_idx_order_list
)
ppocr/modeling/backbones/det_mobilenet_v3.py
浏览文件 @
1ae37919
...
...
@@ -158,7 +158,7 @@ class ConvBNLayer(nn.Layer):
super
(
ConvBNLayer
,
self
).
__init__
()
self
.
if_act
=
if_act
self
.
act
=
act
self
.
conv
=
nn
.
Conv2
d
(
self
.
conv
=
nn
.
Conv2
D
(
in_channels
=
in_channels
,
out_channels
=
out_channels
,
kernel_size
=
kernel_size
,
...
...
@@ -183,7 +183,7 @@ class ConvBNLayer(nn.Layer):
if
self
.
act
==
"relu"
:
x
=
F
.
relu
(
x
)
elif
self
.
act
==
"hard_swish"
:
x
=
F
.
hard_swish
(
x
)
x
=
F
.
activation
.
hard_swish
(
x
)
else
:
print
(
"The activation function is selected incorrectly."
)
exit
()
...
...
@@ -242,16 +242,15 @@ class ResidualUnit(nn.Layer):
x
=
self
.
mid_se
(
x
)
x
=
self
.
linear_conv
(
x
)
if
self
.
if_shortcut
:
x
=
paddle
.
elementwise_
add
(
inputs
,
x
)
x
=
paddle
.
add
(
inputs
,
x
)
return
x
class
SEModule
(
nn
.
Layer
):
def
__init__
(
self
,
in_channels
,
reduction
=
4
,
name
=
""
):
super
(
SEModule
,
self
).
__init__
()
self
.
avg_pool
=
nn
.
Pool2D
(
pool_type
=
"avg"
,
global_pooling
=
True
,
use_cudnn
=
False
)
self
.
conv1
=
nn
.
Conv2d
(
self
.
avg_pool
=
nn
.
AdaptiveAvgPool2D
(
1
)
self
.
conv1
=
nn
.
Conv2D
(
in_channels
=
in_channels
,
out_channels
=
in_channels
//
reduction
,
kernel_size
=
1
,
...
...
@@ -259,7 +258,7 @@ class SEModule(nn.Layer):
padding
=
0
,
weight_attr
=
ParamAttr
(
name
=
name
+
"_1_weights"
),
bias_attr
=
ParamAttr
(
name
=
name
+
"_1_offset"
))
self
.
conv2
=
nn
.
Conv2
d
(
self
.
conv2
=
nn
.
Conv2
D
(
in_channels
=
in_channels
//
reduction
,
out_channels
=
in_channels
,
kernel_size
=
1
,
...
...
@@ -273,5 +272,5 @@ class SEModule(nn.Layer):
outputs
=
self
.
conv1
(
outputs
)
outputs
=
F
.
relu
(
outputs
)
outputs
=
self
.
conv2
(
outputs
)
outputs
=
F
.
hard_sigmoid
(
outputs
)
outputs
=
F
.
activation
.
hard_sigmoid
(
outputs
)
return
inputs
*
outputs
\ No newline at end of file
ppocr/modeling/backbones/rec_mobilenet_v3.py
浏览文件 @
1ae37919
...
...
@@ -127,7 +127,7 @@ class MobileNetV3(nn.Layer):
act
=
'hard_swish'
,
name
=
'conv_last'
)
self
.
pool
=
nn
.
MaxPool2
d
(
kernel_size
=
2
,
stride
=
2
,
padding
=
0
)
self
.
pool
=
nn
.
MaxPool2
D
(
kernel_size
=
2
,
stride
=
2
,
padding
=
0
)
self
.
out_channels
=
make_divisible
(
scale
*
cls_ch_squeeze
)
def
forward
(
self
,
x
):
...
...
ppocr/modeling/heads/det_db_head.py
浏览文件 @
1ae37919
...
...
@@ -33,7 +33,7 @@ def get_bias_attr(k, name):
class
Head
(
nn
.
Layer
):
def
__init__
(
self
,
in_channels
,
name_list
):
super
(
Head
,
self
).
__init__
()
self
.
conv1
=
nn
.
Conv2
d
(
self
.
conv1
=
nn
.
Conv2
D
(
in_channels
=
in_channels
,
out_channels
=
in_channels
//
4
,
kernel_size
=
3
,
...
...
@@ -51,14 +51,14 @@ class Head(nn.Layer):
moving_mean_name
=
name_list
[
1
]
+
'.w_1'
,
moving_variance_name
=
name_list
[
1
]
+
'.w_2'
,
act
=
'relu'
)
self
.
conv2
=
nn
.
Conv
Transpose2d
(
self
.
conv2
=
nn
.
Conv
2DTranspose
(
in_channels
=
in_channels
//
4
,
out_channels
=
in_channels
//
4
,
kernel_size
=
2
,
stride
=
2
,
weight_attr
=
ParamAttr
(
name
=
name_list
[
2
]
+
'.w_0'
,
initializer
=
paddle
.
nn
.
initializer
.
MSRA
(
uniform
=
False
)),
initializer
=
paddle
.
nn
.
initializer
.
KaimingNormal
(
)),
bias_attr
=
get_bias_attr
(
in_channels
//
4
,
name_list
[
-
1
]
+
"conv2"
))
self
.
conv_bn2
=
nn
.
BatchNorm
(
num_channels
=
in_channels
//
4
,
...
...
@@ -71,14 +71,14 @@ class Head(nn.Layer):
moving_mean_name
=
name_list
[
3
]
+
'.w_1'
,
moving_variance_name
=
name_list
[
3
]
+
'.w_2'
,
act
=
"relu"
)
self
.
conv3
=
nn
.
Conv
Transpose2d
(
self
.
conv3
=
nn
.
Conv
2DTranspose
(
in_channels
=
in_channels
//
4
,
out_channels
=
1
,
kernel_size
=
2
,
stride
=
2
,
weight_attr
=
ParamAttr
(
name
=
name_list
[
4
]
+
'.w_0'
,
initializer
=
paddle
.
nn
.
initializer
.
MSRA
(
uniform
=
False
)),
initializer
=
paddle
.
nn
.
initializer
.
KaimingNormal
(
)),
bias_attr
=
get_bias_attr
(
in_channels
//
4
,
name_list
[
-
1
]
+
"conv3"
),
)
...
...
ppocr/modeling/necks/db_fpn.py
浏览文件 @
1ae37919
...
...
@@ -26,37 +26,37 @@ class DBFPN(nn.Layer):
def
__init__
(
self
,
in_channels
,
out_channels
,
**
kwargs
):
super
(
DBFPN
,
self
).
__init__
()
self
.
out_channels
=
out_channels
weight_attr
=
paddle
.
nn
.
initializer
.
MSRA
(
uniform
=
False
)
weight_attr
=
paddle
.
nn
.
initializer
.
KaimingNormal
(
)
self
.
in2_conv
=
nn
.
Conv2
d
(
self
.
in2_conv
=
nn
.
Conv2
D
(
in_channels
=
in_channels
[
0
],
out_channels
=
self
.
out_channels
,
kernel_size
=
1
,
weight_attr
=
ParamAttr
(
name
=
'conv2d_51.w_0'
,
initializer
=
weight_attr
),
bias_attr
=
False
)
self
.
in3_conv
=
nn
.
Conv2
d
(
self
.
in3_conv
=
nn
.
Conv2
D
(
in_channels
=
in_channels
[
1
],
out_channels
=
self
.
out_channels
,
kernel_size
=
1
,
weight_attr
=
ParamAttr
(
name
=
'conv2d_50.w_0'
,
initializer
=
weight_attr
),
bias_attr
=
False
)
self
.
in4_conv
=
nn
.
Conv2
d
(
self
.
in4_conv
=
nn
.
Conv2
D
(
in_channels
=
in_channels
[
2
],
out_channels
=
self
.
out_channels
,
kernel_size
=
1
,
weight_attr
=
ParamAttr
(
name
=
'conv2d_49.w_0'
,
initializer
=
weight_attr
),
bias_attr
=
False
)
self
.
in5_conv
=
nn
.
Conv2
d
(
self
.
in5_conv
=
nn
.
Conv2
D
(
in_channels
=
in_channels
[
3
],
out_channels
=
self
.
out_channels
,
kernel_size
=
1
,
weight_attr
=
ParamAttr
(
name
=
'conv2d_48.w_0'
,
initializer
=
weight_attr
),
bias_attr
=
False
)
self
.
p5_conv
=
nn
.
Conv2
d
(
self
.
p5_conv
=
nn
.
Conv2
D
(
in_channels
=
self
.
out_channels
,
out_channels
=
self
.
out_channels
//
4
,
kernel_size
=
3
,
...
...
@@ -64,7 +64,7 @@ class DBFPN(nn.Layer):
weight_attr
=
ParamAttr
(
name
=
'conv2d_52.w_0'
,
initializer
=
weight_attr
),
bias_attr
=
False
)
self
.
p4_conv
=
nn
.
Conv2
d
(
self
.
p4_conv
=
nn
.
Conv2
D
(
in_channels
=
self
.
out_channels
,
out_channels
=
self
.
out_channels
//
4
,
kernel_size
=
3
,
...
...
@@ -72,7 +72,7 @@ class DBFPN(nn.Layer):
weight_attr
=
ParamAttr
(
name
=
'conv2d_53.w_0'
,
initializer
=
weight_attr
),
bias_attr
=
False
)
self
.
p3_conv
=
nn
.
Conv2
d
(
self
.
p3_conv
=
nn
.
Conv2
D
(
in_channels
=
self
.
out_channels
,
out_channels
=
self
.
out_channels
//
4
,
kernel_size
=
3
,
...
...
@@ -80,7 +80,7 @@ class DBFPN(nn.Layer):
weight_attr
=
ParamAttr
(
name
=
'conv2d_54.w_0'
,
initializer
=
weight_attr
),
bias_attr
=
False
)
self
.
p2_conv
=
nn
.
Conv2
d
(
self
.
p2_conv
=
nn
.
Conv2
D
(
in_channels
=
self
.
out_channels
,
out_channels
=
self
.
out_channels
//
4
,
kernel_size
=
3
,
...
...
@@ -97,17 +97,17 @@ class DBFPN(nn.Layer):
in3
=
self
.
in3_conv
(
c3
)
in2
=
self
.
in2_conv
(
c2
)
out4
=
in4
+
F
.
resize_nearest
(
in5
,
scale
=
2
)
# 1/16
out3
=
in3
+
F
.
resize_nearest
(
out4
,
scale
=
2
)
# 1/8
out2
=
in2
+
F
.
resize_nearest
(
out3
,
scale
=
2
)
# 1/4
out4
=
in4
+
F
.
upsample
(
in5
,
scale_factor
=
2
,
mode
=
"nearest"
)
# 1/16
out3
=
in3
+
F
.
upsample
(
out4
,
scale_factor
=
2
,
mode
=
"nearest"
)
# 1/8
out2
=
in2
+
F
.
upsample
(
out3
,
scale_factor
=
2
,
mode
=
"nearest"
)
# 1/4
p5
=
self
.
p5_conv
(
in5
)
p4
=
self
.
p4_conv
(
out4
)
p3
=
self
.
p3_conv
(
out3
)
p2
=
self
.
p2_conv
(
out2
)
p5
=
F
.
resize_nearest
(
p5
,
scale
=
8
)
p4
=
F
.
resize_nearest
(
p4
,
scale
=
4
)
p3
=
F
.
resize_nearest
(
p3
,
scale
=
2
)
p5
=
F
.
upsample
(
p5
,
scale_factor
=
8
,
mode
=
"nearest"
)
p4
=
F
.
upsample
(
p4
,
scale_factor
=
4
,
mode
=
"nearest"
)
p3
=
F
.
upsample
(
p3
,
scale_factor
=
2
,
mode
=
"nearest"
)
fuse
=
paddle
.
concat
([
p5
,
p4
,
p3
,
p2
],
axis
=
1
)
return
fuse
ppocr/optimizer/__init__.py
浏览文件 @
1ae37919
...
...
@@ -50,9 +50,7 @@ def build_optimizer(config, epochs, step_each_epoch, parameters):
# step3 build optimizer
optim_name
=
config
.
pop
(
'name'
)
# Regularization is invalid. The bug will be fixed in paddle-rc. The param is
# weight_decay.
optim
=
getattr
(
optimizer
,
optim_name
)(
learning_rate
=
lr
,
regularization
=
reg
,
weight_decay
=
reg
,
**
config
)
return
optim
(
parameters
),
lr
ppocr/optimizer/learning_rate.py
浏览文件 @
1ae37919
...
...
@@ -17,7 +17,7 @@ from __future__ import division
from
__future__
import
print_function
from
__future__
import
unicode_literals
from
paddle.optimizer
import
lr_scheduler
from
paddle.optimizer
import
lr
as
lr
_scheduler
class
Linear
(
object
):
...
...
ppocr/utils/logging.py
浏览文件 @
1ae37919
...
...
@@ -52,7 +52,6 @@ def get_logger(name='ppocr', log_file=None, log_level=logging.INFO):
stream_handler
=
logging
.
StreamHandler
(
stream
=
sys
.
stdout
)
stream_handler
.
setFormatter
(
formatter
)
logger
.
addHandler
(
stream_handler
)
if
log_file
is
not
None
and
dist
.
get_rank
()
==
0
:
log_file_folder
=
os
.
path
.
split
(
log_file
)[
0
]
os
.
makedirs
(
log_file_folder
,
exist_ok
=
True
)
...
...
ppocr/utils/save_load.py
浏览文件 @
1ae37919
...
...
@@ -42,16 +42,12 @@ def _mkdir_if_not_exist(path, logger):
raise
OSError
(
'Failed to mkdir {}'
.
format
(
path
))
def
load_dygraph_pretrain
(
model
,
logger
,
path
=
None
,
load_static_weights
=
False
):
def
load_dygraph_pretrain
(
model
,
logger
,
path
=
None
,
load_static_weights
=
False
):
if
not
(
os
.
path
.
isdir
(
path
)
or
os
.
path
.
exists
(
path
+
'.pdparams'
)):
raise
ValueError
(
"Model pretrain path {} does not "
"exists."
.
format
(
path
))
if
load_static_weights
:
pre_state_dict
=
paddle
.
io
.
load_program_state
(
path
)
pre_state_dict
=
paddle
.
static
.
load_program_state
(
path
)
param_state_dict
=
{}
model_dict
=
model
.
state_dict
()
for
key
in
model_dict
.
keys
():
...
...
@@ -113,15 +109,11 @@ def init_model(config, model, logger, optimizer=None, lr_scheduler=None):
if
not
isinstance
(
pretrained_model
,
list
):
pretrained_model
=
[
pretrained_model
]
if
not
isinstance
(
load_static_weights
,
list
):
load_static_weights
=
[
load_static_weights
]
*
len
(
pretrained_model
)
load_static_weights
=
[
load_static_weights
]
*
len
(
pretrained_model
)
for
idx
,
pretrained
in
enumerate
(
pretrained_model
):
load_static
=
load_static_weights
[
idx
]
load_dygraph_pretrain
(
model
,
logger
,
path
=
pretrained
,
load_static_weights
=
load_static
)
model
,
logger
,
path
=
pretrained
,
load_static_weights
=
load_static
)
logger
.
info
(
"load pretrained model from {}"
.
format
(
pretrained_model
))
else
:
...
...
tools/export_model.py
0 → 100755
浏览文件 @
1ae37919
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
argparse
import
paddle
from
paddle.jit
import
to_static
from
ppocr.modeling.architectures
import
build_model
from
ppocr.postprocess
import
build_post_process
from
ppocr.utils.save_load
import
init_model
from
tools.program
import
load_config
from
tools.program
import
merge_config
def
parse_args
():
def
str2bool
(
v
):
return
v
.
lower
()
in
(
"true"
,
"t"
,
"1"
)
parser
=
argparse
.
ArgumentParser
()
parser
.
add_argument
(
"-c"
,
"--config"
,
help
=
"configuration file to use"
)
parser
.
add_argument
(
"-o"
,
"--output_path"
,
type
=
str
,
default
=
'./output/infer/'
)
return
parser
.
parse_args
()
class
Model
(
paddle
.
nn
.
Layer
):
def
__init__
(
self
,
model
):
super
(
Model
,
self
).
__init__
()
self
.
pre_model
=
model
# Please modify the 'shape' according to actual needs
@
to_static
(
input_spec
=
[
paddle
.
static
.
InputSpec
(
shape
=
[
None
,
3
,
32
,
None
],
dtype
=
'float32'
)
])
def
forward
(
self
,
inputs
):
x
=
self
.
pre_model
(
inputs
)
return
x
def
main
():
FLAGS
=
parse_args
()
config
=
load_config
(
FLAGS
.
config
)
merge_config
(
FLAGS
.
opt
)
# build post process
post_process_class
=
build_post_process
(
config
[
'PostProcess'
],
config
[
'Global'
])
# build model
#for rec algorithm
if
hasattr
(
post_process_class
,
'character'
):
char_num
=
len
(
getattr
(
post_process_class
,
'character'
))
config
[
'Architecture'
][
"Head"
][
'out_channels'
]
=
char_num
model
=
build_model
(
config
[
'Architecture'
])
init_model
(
config
,
model
,
logger
)
model
.
eval
()
model
=
Model
(
model
)
paddle
.
jit
.
save
(
model
,
FLAGS
.
output_path
)
if
__name__
==
"__main__"
:
main
()
tools/program.py
浏览文件 @
1ae37919
...
...
@@ -33,6 +33,7 @@ from ppocr.utils.logging import get_logger
from
ppocr.data
import
build_dataloader
import
numpy
as
np
class
ArgsParser
(
ArgumentParser
):
def
__init__
(
self
):
super
(
ArgsParser
,
self
).
__init__
(
...
...
@@ -185,7 +186,7 @@ def train(config,
for
epoch
in
range
(
start_epoch
,
epoch_num
):
if
epoch
>
0
:
train_loader
=
build_dataloader
(
config
,
'Train'
,
device
)
for
idx
,
batch
in
enumerate
(
train_dataloader
):
if
idx
>=
len
(
train_dataloader
):
break
...
...
@@ -196,12 +197,7 @@ def train(config,
preds
=
model
(
images
)
loss
=
loss_class
(
preds
,
batch
)
avg_loss
=
loss
[
'loss'
]
if
config
[
'Global'
][
'distributed'
]:
avg_loss
=
model
.
scale_loss
(
avg_loss
)
avg_loss
.
backward
()
model
.
apply_collective_grads
()
else
:
avg_loss
.
backward
()
avg_loss
.
backward
()
optimizer
.
step
()
optimizer
.
clear_grad
()
if
not
isinstance
(
lr_scheduler
,
float
):
...
...
@@ -227,7 +223,8 @@ def train(config,
vdl_writer
.
add_scalar
(
'TRAIN/{}'
.
format
(
k
),
v
,
global_step
)
vdl_writer
.
add_scalar
(
'TRAIN/lr'
,
lr
,
global_step
)
if
global_step
>
0
and
global_step
%
print_batch_step
==
0
:
if
dist
.
get_rank
(
)
==
0
and
global_step
>
0
and
global_step
%
print_batch_step
==
0
:
logs
=
train_stats
.
log
()
strs
=
'epoch: [{}/{}], iter: {}, {}, time: {:.3f}'
.
format
(
epoch
,
epoch_num
,
global_step
,
logs
,
train_batch_elapse
)
...
...
@@ -235,8 +232,8 @@ def train(config,
# eval
if
global_step
>
start_eval_step
and
\
(
global_step
-
start_eval_step
)
%
eval_batch_step
==
0
and
dist
.
get_rank
()
==
0
:
cur_metirc
=
eval
(
model
,
valid_dataloader
,
post_process_class
,
eval_class
,
logger
,
print_batch_step
)
cur_metirc
=
eval
(
model
,
valid_dataloader
,
post_process_class
,
eval_class
,
logger
,
print_batch_step
)
cur_metirc_str
=
'cur metirc, {}'
.
format
(
', '
.
join
(
[
'{}: {}'
.
format
(
k
,
v
)
for
k
,
v
in
cur_metirc
.
items
()]))
logger
.
info
(
cur_metirc_str
)
...
...
@@ -298,18 +295,17 @@ def train(config,
return
def
eval
(
model
,
valid_dataloader
,
post_process_class
,
eval_class
,
logger
,
print_batch_step
):
def
eval
(
model
,
valid_dataloader
,
post_process_class
,
eval_class
,
logger
,
print_batch_step
):
model
.
eval
()
with
paddle
.
no_grad
():
total_frame
=
0.0
total_time
=
0.0
# pbar = tqdm(total=len(valid_dataloader), desc='eval model:')
# pbar = tqdm(total=len(valid_dataloader), desc='eval model:')
for
idx
,
batch
in
enumerate
(
valid_dataloader
):
if
idx
>=
len
(
valid_dataloader
):
break
images
=
paddle
.
to_
variable
(
batch
[
0
])
images
=
paddle
.
to_
tensor
(
batch
[
0
])
start
=
time
.
time
()
preds
=
model
(
images
)
...
...
@@ -319,13 +315,14 @@ def eval(model, valid_dataloader,
total_time
+=
time
.
time
()
-
start
# Evaluate the results of the current batch
eval_class
(
post_result
,
batch
)
# pbar.update(1)
# pbar.update(1)
total_frame
+=
len
(
images
)
if
idx
%
print_batch_step
==
0
:
if
idx
%
print_batch_step
==
0
and
dist
.
get_rank
()
==
0
:
logger
.
info
(
'tackling images for eval: {}/{}'
.
format
(
idx
,
len
(
valid_dataloader
)))
# Get final metirc,eg. acc or hmean
metirc
=
eval_class
.
get_metric
()
# pbar.close()
model
.
train
()
metirc
[
'fps'
]
=
total_frame
/
total_time
...
...
@@ -348,16 +345,15 @@ def preprocess():
device
=
'gpu:{}'
.
format
(
dist
.
ParallelEnv
().
dev_id
)
if
use_gpu
else
'cpu'
device
=
paddle
.
set_device
(
device
)
config
[
'Global'
][
'distributed'
]
=
dist
.
get_world_size
()
!=
1
paddle
.
disable_static
(
device
)
# save_config
save_model_dir
=
config
[
'Global'
][
'save_model_dir'
]
os
.
makedirs
(
save_model_dir
,
exist_ok
=
True
)
with
open
(
os
.
path
.
join
(
save_model_dir
,
'config.yml'
),
'w'
)
as
f
:
yaml
.
dump
(
dict
(
config
),
f
,
default_flow_style
=
False
,
sort_keys
=
False
)
logger
=
get_logger
(
log_file
=
'{}/train.log'
.
format
(
save_model_dir
))
if
config
[
'Global'
][
'use_visualdl'
]:
from
visualdl
import
LogWriter
...
...
tools/train.py
浏览文件 @
1ae37919
...
...
@@ -27,9 +27,8 @@ import yaml
import
paddle
import
paddle.distributed
as
dist
paddle
.
manual_
seed
(
2
)
paddle
.
seed
(
2
)
from
ppocr.utils.logging
import
get_logger
from
ppocr.data
import
build_dataloader
from
ppocr.modeling.architectures
import
build_model
from
ppocr.losses
import
build_loss
...
...
@@ -49,18 +48,18 @@ def main(config, device, logger, vdl_writer):
dist
.
init_parallel_env
()
global_config
=
config
[
'Global'
]
# build dataloader
train_dataloader
=
build_dataloader
(
config
,
'Train'
,
device
)
train_dataloader
=
build_dataloader
(
config
,
'Train'
,
device
,
logger
)
if
config
[
'Eval'
]:
valid_dataloader
=
build_dataloader
(
config
,
'Eval'
,
device
)
valid_dataloader
=
build_dataloader
(
config
,
'Eval'
,
device
,
logger
)
else
:
valid_dataloader
=
None
# build post process
post_process_class
=
build_post_process
(
config
[
'PostProcess'
],
global_config
)
post_process_class
=
build_post_process
(
config
[
'PostProcess'
],
global_config
)
# build model
#for rec algorithm
if
hasattr
(
post_process_class
,
'character'
):
...
...
@@ -72,38 +71,29 @@ def main(config, device, logger, vdl_writer):
# build loss
loss_class
=
build_loss
(
config
[
'Loss'
])
# build optim
optimizer
,
lr_scheduler
=
build_optimizer
(
config
[
'Optimizer'
],
optimizer
,
lr_scheduler
=
build_optimizer
(
config
[
'Optimizer'
],
epochs
=
config
[
'Global'
][
'epoch_num'
],
step_each_epoch
=
len
(
train_dataloader
),
parameters
=
model
.
parameters
())
# build metric
eval_class
=
build_metric
(
config
[
'Metric'
])
# load pretrain model
pre_best_model_dict
=
init_model
(
config
,
model
,
logger
,
optimizer
)
# start train
program
.
train
(
config
,
train_dataloader
,
valid_dataloader
,
device
,
model
,
loss_class
,
optimizer
,
lr_scheduler
,
post_process_class
,
eval_class
,
pre_best_model_dict
,
logger
,
vdl_writer
)
program
.
train
(
config
,
train_dataloader
,
valid_dataloader
,
device
,
model
,
loss_class
,
optimizer
,
lr_scheduler
,
post_process_class
,
eval_class
,
pre_best_model_dict
,
logger
,
vdl_writer
)
def
test_reader
(
config
,
device
,
logger
):
loader
=
build_dataloader
(
config
,
'Train'
,
device
)
# loader = build_dataloader(config, 'Eval', device)
# loader = build_dataloader(config, 'Eval', device)
import
time
starttime
=
time
.
time
()
count
=
0
...
...
@@ -113,11 +103,13 @@ def test_reader(config, device, logger):
if
count
%
1
==
0
:
batch_time
=
time
.
time
()
-
starttime
starttime
=
time
.
time
()
logger
.
info
(
"reader: {}, {}, {}"
.
format
(
count
,
len
(
data
),
batch_time
))
logger
.
info
(
"reader: {}, {}, {}"
.
format
(
count
,
len
(
data
),
batch_time
))
except
Exception
as
e
:
logger
.
info
(
e
)
logger
.
info
(
"finish reader: {}, Success!"
.
format
(
count
))
if
__name__
==
'__main__'
:
config
,
device
,
logger
,
vdl_writer
=
program
.
preprocess
()
main
(
config
,
device
,
logger
,
vdl_writer
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录