提交 1ad3ba3e 编写于 作者: A andyjpaddle

update kl pact config

上级 c493be7b
......@@ -100,7 +100,8 @@ if [ ${MODE} = "lite_train_lite_infer" ];then
wget -nc -P ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vd_ssld_pretrained.pdparams --no-check-certificate
wget -nc -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_sast_icdar15_v2.0_train.tar --no-check-certificate
wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/total_text_lite.tar --no-check-certificate
cd ./train_data && tar xf total_text_lite.tar && ln -s total_text_lite total_text && tar xf det_r50_vd_sast_icdar15_v2.0_train.tar && cd ../
cd ./train_data && tar xf total_text_lite.tar && ln -s total_text_lite total_text && cd ../
cd ./pretrain_models && tar xf det_r50_vd_sast_icdar15_v2.0_train.tar && cd ../
fi
if [ ${model_name} == "det_mv3_db_v2_0" ]; then
wget -nc -P ./inference/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_mv3_db_v2.0_train.tar --no-check-certificate
......@@ -353,7 +354,7 @@ elif [ ${MODE} = "whole_infer" ];then
fi
fi
if [ ${MODE} = "klquant_whole_infer" ]; then
if [[ ${model_name} =~ "KL" ]]; then
wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/icdar2015_lite.tar --no-check-certificate
cd ./train_data/ && tar xf icdar2015_lite.tar && rm -rf ./icdar2015 && ln -s ./icdar2015_lite ./icdar2015 && cd ../
if [ ${model_name} = "ch_ppocr_mobile_v2.0_det_KL" ]; then
......
#!/bin/bash
source test_tipc/common_func.sh
FILENAME=$1
# MODE be one of [''whole_infer']
MODE=$2
IFS=$'\n'
# parser klquant_infer params
dataline=$(awk 'NR==1, NR==17{print}' $FILENAME)
lines=(${dataline})
model_name=$(func_parser_value "${lines[1]}")
python=$(func_parser_value "${lines[2]}")
export_weight=$(func_parser_key "${lines[3]}")
save_infer_key=$(func_parser_key "${lines[4]}")
# parser inference model
infer_model_dir_list=$(func_parser_value "${lines[5]}")
infer_export_list=$(func_parser_value "${lines[6]}")
infer_is_quant=$(func_parser_value "${lines[7]}")
# parser inference
inference_py=$(func_parser_value "${lines[8]}")
use_gpu_key=$(func_parser_key "${lines[9]}")
use_gpu_list=$(func_parser_value "${lines[9]}")
use_mkldnn_key=$(func_parser_key "${lines[10]}")
use_mkldnn_list=$(func_parser_value "${lines[10]}")
cpu_threads_key=$(func_parser_key "${lines[11]}")
cpu_threads_list=$(func_parser_value "${lines[11]}")
batch_size_key=$(func_parser_key "${lines[12]}")
batch_size_list=$(func_parser_value "${lines[12]}")
use_trt_key=$(func_parser_key "${lines[13]}")
use_trt_list=$(func_parser_value "${lines[13]}")
precision_key=$(func_parser_key "${lines[14]}")
precision_list=$(func_parser_value "${lines[14]}")
infer_model_key=$(func_parser_key "${lines[15]}")
image_dir_key=$(func_parser_key "${lines[16]}")
infer_img_dir=$(func_parser_value "${lines[16]}")
save_log_key=$(func_parser_key "${lines[17]}")
save_log_value=$(func_parser_value "${lines[17]}")
benchmark_key=$(func_parser_key "${lines[18]}")
benchmark_value=$(func_parser_value "${lines[18]}")
infer_key1=$(func_parser_key "${lines[19]}")
infer_value1=$(func_parser_value "${lines[19]}")
LOG_PATH="./test_tipc/output/${model_name}/${MODE}"
mkdir -p ${LOG_PATH}
status_log="${LOG_PATH}/results_python.log"
function func_inference(){
IFS='|'
_python=$1
_script=$2
_model_dir=$3
_log_path=$4
_img_dir=$5
_flag_quant=$6
# inference
for use_gpu in ${use_gpu_list[*]}; do
if [ ${use_gpu} = "False" ] || [ ${use_gpu} = "cpu" ]; then
for use_mkldnn in ${use_mkldnn_list[*]}; do
for threads in ${cpu_threads_list[*]}; do
for batch_size in ${batch_size_list[*]}; do
for precision in ${precision_list[*]}; do
if [ ${use_mkldnn} = "False" ] && [ ${precision} = "fp16" ]; then
continue
fi # skip when enable fp16 but disable mkldnn
if [ ${_flag_quant} = "True" ] && [ ${precision} != "int8" ]; then
continue
fi # skip when quant model inference but precision is not int8
set_precision=$(func_set_params "${precision_key}" "${precision}")
_save_log_path="${_log_path}/python_infer_cpu_usemkldnn_${use_mkldnn}_threads_${threads}_precision_${precision}_batchsize_${batch_size}.log"
set_infer_data=$(func_set_params "${image_dir_key}" "${_img_dir}")
set_benchmark=$(func_set_params "${benchmark_key}" "${benchmark_value}")
set_batchsize=$(func_set_params "${batch_size_key}" "${batch_size}")
set_mkldnn=$(func_set_params "${use_mkldnn_key}" "${use_mkldnn}")
set_cpu_threads=$(func_set_params "${cpu_threads_key}" "${threads}")
set_model_dir=$(func_set_params "${infer_model_key}" "${_model_dir}")
set_infer_params0=$(func_set_params "${save_log_key}" "${save_log_value}")
set_infer_params1=$(func_set_params "${infer_key1}" "${infer_value1}")
command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${set_mkldnn} ${set_cpu_threads} ${set_model_dir} ${set_batchsize} ${set_infer_params0} ${set_infer_data} ${set_benchmark} ${set_precision} ${set_infer_params1} > ${_save_log_path} 2>&1 "
eval $command
last_status=${PIPESTATUS[0]}
eval "cat ${_save_log_path}"
status_check $last_status "${command}" "${status_log}" "${model_name}"
done
done
done
done
elif [ ${use_gpu} = "True" ] || [ ${use_gpu} = "gpu" ]; then
for use_trt in ${use_trt_list[*]}; do
for precision in ${precision_list[*]}; do
if [ ${_flag_quant} = "True" ] && [ ${precision} != "int8" ]; then
continue
fi # skip when quant model inference but precision is not int8
for batch_size in ${batch_size_list[*]}; do
_save_log_path="${_log_path}/python_infer_gpu_usetrt_${use_trt}_precision_${precision}_batchsize_${batch_size}.log"
set_infer_data=$(func_set_params "${image_dir_key}" "${_img_dir}")
set_benchmark=$(func_set_params "${benchmark_key}" "${benchmark_value}")
set_batchsize=$(func_set_params "${batch_size_key}" "${batch_size}")
set_tensorrt=$(func_set_params "${use_trt_key}" "${use_trt}")
set_precision=$(func_set_params "${precision_key}" "${precision}")
set_model_dir=$(func_set_params "${infer_model_key}" "${_model_dir}")
set_infer_params0=$(func_set_params "${save_log_key}" "${save_log_value}")
set_infer_params1=$(func_set_params "${infer_key1}" "${infer_value1}")
command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${set_tensorrt} ${set_precision} ${set_model_dir} ${set_batchsize} ${set_infer_data} ${set_benchmark} ${set_infer_params1} ${set_infer_params0} > ${_save_log_path} 2>&1 "
eval $command
last_status=${PIPESTATUS[0]}
eval "cat ${_save_log_path}"
status_check $last_status "${command}" "${status_log}" "${model_name}"
done
done
done
else
echo "Does not support hardware other than CPU and GPU Currently!"
fi
done
}
if [ ${MODE} = "whole_infer" ]; then
GPUID=$3
if [ ${#GPUID} -le 0 ];then
env=" "
else
env="export CUDA_VISIBLE_DEVICES=${GPUID}"
fi
# set CUDA_VISIBLE_DEVICES
eval $env
export Count=0
IFS="|"
infer_run_exports=(${infer_export_list})
infer_quant_flag=(${infer_is_quant})
for infer_model in ${infer_model_dir_list[*]}; do
# run export
if [ ${infer_run_exports[Count]} != "null" ];then
save_infer_dir="${infer_model}_klquant"
set_export_weight=$(func_set_params "${export_weight}" "${infer_model}")
set_save_infer_key=$(func_set_params "${save_infer_key}" "${save_infer_dir}")
export_cmd="${python} ${infer_run_exports[Count]} ${set_export_weight} ${set_save_infer_key}"
echo ${infer_run_exports[Count]}
echo $export_cmd
eval $export_cmd
status_export=$?
status_check $status_export "${export_cmd}" "${status_log}" "${model_name}"
else
save_infer_dir=${infer_model}
fi
#run inference
is_quant="True"
func_inference "${python}" "${inference_py}" "${save_infer_dir}" "${LOG_PATH}" "${infer_img_dir}" ${is_quant}
Count=$(($Count + 1))
done
fi
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册