未验证 提交 10f7e519 编写于 作者: 文幕地方's avatar 文幕地方 提交者: GitHub

Merge pull request #6 from PaddlePaddle/develop

merge paddleocr
English | [简体中文](README_cn.md)
## Introduction
Many user hopes package the PaddleOCR service into an docker image, so that it can be quickly released and used in the docker or k8s environment.
This page provide some standardized code to achieve this goal. You can quickly publish the PaddleOCR project into a callable Restful API service through the following steps. (At present, the deployment based on the HubServing mode is implemented first, and author plans to increase the deployment of the PaddleServing mode in the futrue)
## 1. Prerequisites
You need to install the following basic components first:
a. Docker
b. Graphics driver and CUDA 10.0+(GPU)
c. NVIDIA Container Toolkit(GPU,Docker 19.03+ can skip this)
d. cuDNN 7.6+(GPU)
## 2. Build Image
a. Download PaddleOCR sourcecode
```
git clone https://github.com/PaddlePaddle/PaddleOCR.git
```
b. Goto Dockerfile directory(ps:Need to distinguish between cpu and gpu version, the following takes cpu as an example, gpu version needs to replace the keyword)
```
cd docker/cpu
```
c. Build image
```
docker build -t paddleocr:cpu .
```
## 3. Start container
a. CPU version
```
sudo docker run -dp 8866:8866 --name paddle_ocr paddleocr:cpu
```
b. GPU version (base on NVIDIA Container Toolkit)
```
sudo nvidia-docker run -dp 8866:8866 --name paddle_ocr paddleocr:gpu
```
c. GPU version (Docker 19.03++)
```
sudo docker run -dp 8866:8866 --gpus all --name paddle_ocr paddleocr:gpu
```
d. Check service status(If you can see the following statement then it means completed:Successfully installed ocr_system && Running on http://0.0.0.0:8866/)
```
docker logs -f paddle_ocr
```
## 4. Test
a. Calculate the Base64 encoding of the picture to be recognized (if you just test, you can use a free online tool, like:https://freeonlinetools24.com/base64-image/)
b. Post a service request(sample request in sample_request.txt)
```
curl -H "Content-Type:application/json" -X POST --data "{\"images\": [\"Input image Base64 encode(need to delete the code 'data:image/jpg;base64,')\"]}" http://localhost:8866/predict/ocr_system
```
c. Get resposne(If the call is successful, the following result will be returned)
```
{"msg":"","results":[[{"confidence":0.8403433561325073,"text":"约定","text_region":[[345,377],[641,390],[634,540],[339,528]]},{"confidence":0.8131805658340454,"text":"最终相遇","text_region":[[356,532],[624,530],[624,596],[356,598]]}]],"status":"0"}
```
[English](README.md) | 简体中文
## Docker化部署服务
在日常项目应用中,相信大家一般都会希望能通过Docker技术,把PaddleOCR服务打包成一个镜像,以便在Docker或k8s环境里,快速发布上线使用。
本文将提供一些标准化的代码来实现这样的目标。大家通过如下步骤可以把PaddleOCR项目快速发布成可调用的Restful API服务。(目前暂时先实现了基于HubServing模式的部署,后续作者计划增加PaddleServing模式的部署)
## 1.实施前提准备
需要先完成如下基本组件的安装:
a. Docker环境
b. 显卡驱动和CUDA 10.0+(GPU)
c. NVIDIA Container Toolkit(GPU,Docker 19.03以上版本可以跳过此步)
d. cuDNN 7.6+(GPU)
## 2.制作镜像
a.下载PaddleOCR项目代码
```
git clone https://github.com/PaddlePaddle/PaddleOCR.git
```
b.切换至Dockerfile目录(注:需要区分cpu或gpu版本,下文以cpu为例,gpu版本需要替换一下关键字即可)
```
cd docker/cpu
```
c.生成镜像
```
docker build -t paddleocr:cpu .
```
## 3.启动Docker容器
a. CPU 版本
```
sudo docker run -dp 8866:8866 --name paddle_ocr paddleocr:cpu
```
b. GPU 版本 (通过NVIDIA Container Toolkit)
```
sudo nvidia-docker run -dp 8866:8866 --name paddle_ocr paddleocr:gpu
```
c. GPU 版本 (Docker 19.03以上版本,可以直接用如下命令)
```
sudo docker run -dp 8866:8866 --gpus all --name paddle_ocr paddleocr:gpu
```
d. 检查服务运行情况(出现:Successfully installed ocr_system和Running on http://0.0.0.0:8866/等信息,表示运行成功)
```
docker logs -f paddle_ocr
```
## 4.测试服务
a. 计算待识别图片的Base64编码(如果只是测试一下效果,可以通过免费的在线工具实现,如:http://tool.chinaz.com/tools/imgtobase/)
b. 发送服务请求(可参见sample_request.txt中的值)
```
curl -H "Content-Type:application/json" -X POST --data "{\"images\": [\"填入图片Base64编码(需要删除'data:image/jpg;base64,')\"]}" http://localhost:8866/predict/ocr_system
```
c. 返回结果(如果调用成功,会返回如下结果)
```
{"msg":"","results":[[{"confidence":0.8403433561325073,"text":"约定","text_region":[[345,377],[641,390],[634,540],[339,528]]},{"confidence":0.8131805658340454,"text":"最终相遇","text_region":[[356,532],[624,530],[624,596],[356,598]]}]],"status":"0"}
```
# Docker化部署服务 English | [简体中文](README_cn.md)
在日常项目应用中,相信大家一般都会希望能通过Docker技术,把PaddleOCR服务打包成一个镜像,以便在Docker或k8s环境里,快速发布上线使用。
本文将提供一些标准化的代码来实现这样的目标。大家通过如下步骤可以把PaddleOCR项目快速发布成可调用的Restful API服务。(目前暂时先实现了基于HubServing模式的部署,后续作者计划增加PaddleServing模式的部署) ## Introduction
Many user hopes package the PaddleOCR service into an docker image, so that it can be quickly released and used in the docker or k8s environment.
## 1.实施前提准备 This page provide some standardized code to achieve this goal. You can quickly publish the PaddleOCR project into a callable Restful API service through the following steps. (At present, the deployment based on the HubServing mode is implemented first, and author plans to increase the deployment of the PaddleServing mode in the futrue)
需要先完成如下基本组件的安装: ## 1. Prerequisites
a. Docker环境
b. 显卡驱动和CUDA 10.0+(GPU) You need to install the following basic components first:
c. NVIDIA Container Toolkit(GPU,Docker 19.03以上版本可以跳过此步) a. Docker
b. Graphics driver and CUDA 10.0+(GPU)
c. NVIDIA Container Toolkit(GPU,Docker 19.03+ can skip this)
d. cuDNN 7.6+(GPU) d. cuDNN 7.6+(GPU)
## 2.制作镜像 ## 2. Build Image
a.下载PaddleOCR项目代码 a. Download PaddleOCR sourcecode
``` ```
git clone https://github.com/PaddlePaddle/PaddleOCR.git git clone https://github.com/PaddlePaddle/PaddleOCR.git
``` ```
b.切换至Dockerfile目录(注:需要区分cpu或gpu版本,下文以cpu为例,gpu版本需要替换一下关键字即可 b. Goto Dockerfile directory(ps:Need to distinguish between cpu and gpu version, the following takes cpu as an example, gpu version needs to replace the keyword
``` ```
cd docker/cpu cd docker/cpu
``` ```
c.生成镜像 c. Build image
``` ```
docker build -t paddleocr:cpu . docker build -t paddleocr:cpu .
``` ```
## 3.启动Docker容器 ## 3. Start container
a. CPU 版本 a. CPU version
``` ```
sudo docker run -dp 8866:8866 --name paddle_ocr paddleocr:cpu sudo docker run -dp 8866:8866 --name paddle_ocr paddleocr:cpu
``` ```
b. GPU 版本 (通过NVIDIA Container Toolkit) b. GPU version (base on NVIDIA Container Toolkit)
``` ```
sudo nvidia-docker run -dp 8866:8866 --name paddle_ocr paddleocr:gpu sudo nvidia-docker run -dp 8866:8866 --name paddle_ocr paddleocr:gpu
``` ```
c. GPU 版本 (Docker 19.03以上版本,可以直接用如下命令) c. GPU version (Docker 19.03++)
``` ```
sudo docker run -dp 8866:8866 --gpus all --name paddle_ocr paddleocr:gpu sudo docker run -dp 8866:8866 --gpus all --name paddle_ocr paddleocr:gpu
``` ```
d. 检查服务运行情况(出现:Successfully installed ocr_system和Running on http://0.0.0.0:8866/等信息,表示运行成功 d. Check service status(If you can see the following statement then it means completed:Successfully installed ocr_system && Running on http://0.0.0.0:8866/
``` ```
docker logs -f paddle_ocr docker logs -f paddle_ocr
``` ```
## 4.测试服务 ## 4. Test
a. 计算待识别图片的Base64编码(如果只是测试一下效果,可以通过免费的在线工具实现,如:http://tool.chinaz.com/tools/imgtobase/) a. Calculate the Base64 encoding of the picture to be recognized (if you just test, you can use a free online tool, like:https://freeonlinetools24.com/base64-image/)
b. 发送服务请求(可参见sample_request.txt中的值) b. Post a service request(sample request in sample_request.txt)
``` ```
curl -H "Content-Type:application/json" -X POST --data "{\"images\": [\"填入图片Base64编码(需要删除'data:image/jpg;base64,')\"]}" http://localhost:8866/predict/ocr_system curl -H "Content-Type:application/json" -X POST --data "{\"images\": [\"Input image Base64 encode(need to delete the code 'data:image/jpg;base64,')\"]}" http://localhost:8866/predict/ocr_system
``` ```
c. 返回结果(如果调用成功,会返回如下结果 c. Get resposne(If the call is successful, the following result will be returned
``` ```
{"msg":"","results":[[{"confidence":0.8403433561325073,"text":"约定","text_region":[[345,377],[641,390],[634,540],[339,528]]},{"confidence":0.8131805658340454,"text":"最终相遇","text_region":[[356,532],[624,530],[624,596],[356,598]]}]],"status":"0"} {"msg":"","results":[[{"confidence":0.8403433561325073,"text":"约定","text_region":[[345,377],[641,390],[634,540],[339,528]]},{"confidence":0.8131805658340454,"text":"最终相遇","text_region":[[356,532],[624,530],[624,596],[356,598]]}]],"status":"0"}
``` ```
...@@ -129,6 +129,7 @@ def parse_args(): ...@@ -129,6 +129,7 @@ def parse_args():
parser.add_argument("--det", type=str2bool, default=True) parser.add_argument("--det", type=str2bool, default=True)
parser.add_argument("--rec", type=str2bool, default=True) parser.add_argument("--rec", type=str2bool, default=True)
parser.add_argument("--use_zero_copy_run", type=bool, default=False)
return parser.parse_args() return parser.parse_args()
...@@ -209,4 +210,4 @@ def main(): ...@@ -209,4 +210,4 @@ def main():
print(img_path) print(img_path)
result = ocr_engine.ocr(img_path, det=args.det, rec=args.rec) result = ocr_engine.ocr(img_path, det=args.det, rec=args.rec)
for line in result: for line in result:
print(line) print(line)
\ No newline at end of file
...@@ -257,6 +257,7 @@ class SimpleReader(object): ...@@ -257,6 +257,7 @@ class SimpleReader(object):
norm_img = process_image_srn( norm_img = process_image_srn(
img=img, img=img,
image_shape=self.image_shape, image_shape=self.image_shape,
char_ops=self.char_ops,
num_heads=self.num_heads, num_heads=self.num_heads,
max_text_length=self.max_text_length) max_text_length=self.max_text_length)
else: else:
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册