提交 0150e56b 编写于 作者: T tink2123

add det and rec service

上级 f933579c
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle_serving_server.web_service import WebService, Op
import logging
import numpy as np
import cv2
import base64
# from paddle_serving_app.reader import OCRReader
from ocr_reader import OCRReader, DetResizeForTest
from paddle_serving_app.reader import Sequential, ResizeByFactor
from paddle_serving_app.reader import Div, Normalize, Transpose
from paddle_serving_app.reader import DBPostProcess, FilterBoxes, GetRotateCropImage, SortedBoxes
_LOGGER = logging.getLogger()
class DetOp(Op):
def init_op(self):
self.det_preprocess = Sequential([
DetResizeForTest(), Div(255),
Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), Transpose(
(2, 0, 1))
])
self.filter_func = FilterBoxes(10, 10)
self.post_func = DBPostProcess({
"thresh": 0.3,
"box_thresh": 0.5,
"max_candidates": 1000,
"unclip_ratio": 1.5,
"min_size": 3
})
def preprocess(self, input_dicts, data_id, log_id):
(_, input_dict), = input_dicts.items()
data = base64.b64decode(input_dict["image"].encode('utf8'))
self.raw_im = data
data = np.fromstring(data, np.uint8)
# Note: class variables(self.var) can only be used in process op mode
im = cv2.imdecode(data, cv2.IMREAD_COLOR)
self.ori_h, self.ori_w, _ = im.shape
det_img = self.det_preprocess(im)
_, self.new_h, self.new_w = det_img.shape
return {"x": det_img[np.newaxis, :].copy()}, False, None, ""
def postprocess(self, input_dicts, fetch_dict, log_id):
det_out = fetch_dict["save_infer_model/scale_0.tmp_1"]
ratio_list = [
float(self.new_h) / self.ori_h, float(self.new_w) / self.ori_w
]
dt_boxes_list = self.post_func(det_out, [ratio_list])
dt_boxes = self.filter_func(dt_boxes_list[0], [self.ori_h, self.ori_w])
out_dict = {"dt_boxes": str(dt_boxes)}
return out_dict, None, ""
class OcrService(WebService):
def get_pipeline_response(self, read_op):
det_op = DetOp(name="det", input_ops=[read_op])
return det_op
uci_service = OcrService(name="ocr")
uci_service.prepare_pipeline_config("config.yml")
uci_service.run_service()
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle_serving_server.web_service import WebService, Op
import logging
import numpy as np
import cv2
import base64
# from paddle_serving_app.reader import OCRReader
from ocr_reader import OCRReader, DetResizeForTest
from paddle_serving_app.reader import Sequential, ResizeByFactor
from paddle_serving_app.reader import Div, Normalize, Transpose
_LOGGER = logging.getLogger()
class RecOp(Op):
def init_op(self):
self.ocr_reader = OCRReader(
char_dict_path="../../ppocr/utils/ppocr_keys_v1.txt")
def preprocess(self, input_dicts, data_id, log_id):
(_, input_dict), = input_dicts.items()
raw_im = base64.b64decode(input_dict["image"].encode('utf8'))
data = np.fromstring(raw_im, np.uint8)
im = cv2.imdecode(data, cv2.IMREAD_COLOR)
feed_list = []
max_wh_ratio = 0
## Many mini-batchs, the type of feed_data is list.
max_batch_size = 6 # len(dt_boxes)
# If max_batch_size is 0, skipping predict stage
if max_batch_size == 0:
return {}, True, None, ""
boxes_size = max_batch_size
rem = boxes_size % max_batch_size
h, w = im.shape[0:2]
wh_ratio = w * 1.0 / h
max_wh_ratio = max(max_wh_ratio, wh_ratio)
_, w, h = self.ocr_reader.resize_norm_img(im, max_wh_ratio).shape
norm_img = self.ocr_reader.resize_norm_img(im, max_batch_size)
norm_img = norm_img[np.newaxis, :]
feed = {"x": norm_img.copy()}
feed_list.append(feed)
return feed_list, False, None, ""
def postprocess(self, input_dicts, fetch_data, log_id):
res_list = []
if isinstance(fetch_data, dict):
if len(fetch_data) > 0:
rec_batch_res = self.ocr_reader.postprocess(
fetch_data, with_score=True)
for res in rec_batch_res:
res_list.append(res[0])
elif isinstance(fetch_data, list):
for one_batch in fetch_data:
one_batch_res = self.ocr_reader.postprocess(
one_batch, with_score=True)
for res in one_batch_res:
res_list.append(res[0])
res = {"res": str(res_list)}
return res, None, ""
class OcrService(WebService):
def get_pipeline_response(self, read_op):
rec_op = RecOp(name="rec", input_ops=[read_op])
return rec_op
uci_service = OcrService(name="ocr")
uci_service.prepare_pipeline_config("config.yml")
uci_service.run_service()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册