“72fb86a284bd28ebbc83cd3d224a6df2f9a14b7c”上不存在“paddle/operators/batch_norm_op.h”
synthesisers.py 3.0 KB
Newer Older
W
weishengyu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
W
weishengyu 已提交
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
import os

from utils.config import ArgsParser, load_config, override_config
from utils.logging import get_logger
from engine import style_samplers, corpus_generators, text_drawers, predictors, writers


class ImageSynthesiser(object):
    def __init__(self):
        self.FLAGS = ArgsParser().parse_args()
        self.config = load_config(self.FLAGS.config)
        self.config = override_config(self.config, options=self.FLAGS.override)
        self.output_dir = self.config["Global"]["output_dir"]
        if not os.path.exists(self.output_dir):
            os.mkdir(self.output_dir)
        self.logger = get_logger(
            log_file='{}/predict.log'.format(self.output_dir))

        self.text_drawer = text_drawers.StdTextDrawer(self.config)

        predictor_method = self.config["Predictor"]["method"]
        assert predictor_method is not None
        self.predictor = getattr(predictors, predictor_method)(self.config)

    def synth_image(self, corpus, style_input, language="en"):
        corpus, text_input = self.text_drawer.draw_text(corpus, language)
        synth_result = self.predictor.predict(style_input, text_input)
        return synth_result


class DatasetSynthesiser(ImageSynthesiser):
    def __init__(self):
        super(DatasetSynthesiser, self).__init__()
        self.tag = self.FLAGS.tag
        self.output_num = self.config["Global"]["output_num"]
        corpus_generator_method = self.config["CorpusGenerator"]["method"]
        self.corpus_generator = getattr(corpus_generators,
                                        corpus_generator_method)(self.config)

        style_sampler_method = self.config["StyleSampler"]["method"]
        assert style_sampler_method is not None
        self.style_sampler = style_samplers.DatasetSampler(self.config)
        self.writer = writers.SimpleWriter(self.config, self.tag)

    def synth_dataset(self):
        for i in range(self.output_num):
            style_data = self.style_sampler.sample()
            style_input = style_data["image"]
            corpus_language, text_input_label = self.corpus_generator.generate(
            )
            text_input_label, text_input = self.text_drawer.draw_text(
                text_input_label, corpus_language)

            synth_result = self.predictor.predict(style_input, text_input)
            fake_fusion = synth_result["fake_fusion"]
            self.writer.save_image(fake_fusion, text_input_label)
        self.writer.save_label()
        self.writer.merge_label()