dataset_traversal.py 3.8 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

import os
import math
import random
import functools
import numpy as np
import cv2
import string
from ppocr.utils.utility import initial_logger
logger = initial_logger()
from ppocr.utils.utility import create_module
L
LDOUBLEV 已提交
25
from ppocr.utils.utility import get_image_file_list
L
LDOUBLEV 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
import time


class TrainReader(object):
    def __init__(self, params):
        self.num_workers = params['num_workers']
        self.label_file_path = params['label_file_path']
        self.batch_size = params['train_batch_size_per_card']
        assert 'process_function' in params,\
            "absence process_function in Reader"
        self.process = create_module(params['process_function'])(params)

    def __call__(self, process_id):
        def sample_iter_reader():
            with open(self.label_file_path, "rb") as fin:
                label_infor_list = fin.readlines()
            img_num = len(label_infor_list)
            img_id_list = list(range(img_num))
            random.shuffle(img_id_list)
            for img_id in range(process_id, img_num, self.num_workers):
                label_infor = label_infor_list[img_id_list[img_id]]
                outs = self.process(label_infor)
                if outs is None:
                    continue
                yield outs

        def batch_iter_reader():
            batch_outs = []
            for outs in sample_iter_reader():
                batch_outs.append(outs)
                if len(batch_outs) == self.batch_size:
                    yield batch_outs
                    batch_outs = []
            if len(batch_outs) != 0:
                yield batch_outs

        return batch_iter_reader


class EvalTestReader(object):
    def __init__(self, params):
        self.params = params
        assert 'process_function' in params,\
            "absence process_function in EvalTestReader"

    def __call__(self, mode):
        process_function = create_module(self.params['process_function'])(
            self.params)
        batch_size = self.params['test_batch_size_per_card']

        img_list = []
L
LDOUBLEV 已提交
77
        if mode != "test":
L
LDOUBLEV 已提交
78 79 80 81 82 83
            img_set_dir = self.params['img_set_dir']
            img_name_list_path = self.params['label_file_path']
            with open(img_name_list_path, "rb") as fin:
                lines = fin.readlines()
                for line in lines:
                    img_name = line.decode().strip("\n").split("\t")[0]
L
LDOUBLEV 已提交
84 85
                    img_path = os.path.join(img_set_dir, img_name)
                    img_list.append([img_path])
L
LDOUBLEV 已提交
86 87 88
        else:
            img_path = self.params['single_img_path']
            img_list = get_image_file_list(img_path)
L
LDOUBLEV 已提交
89 90 91

        def batch_iter_reader():
            batch_outs = []
L
LDOUBLEV 已提交
92
            for img_path in img_list:
L
LDOUBLEV 已提交
93 94 95 96 97
                img = cv2.imread(img_path)
                if img is None:
                    logger.info("load image error:" + img_path)
                    continue
                outs = process_function(img)
L
LDOUBLEV 已提交
98
                outs.append(img_path)
L
LDOUBLEV 已提交
99 100 101 102 103 104 105 106
                batch_outs.append(outs)
                if len(batch_outs) == batch_size:
                    yield batch_outs
                    batch_outs = []
            if len(batch_outs) != 0:
                yield batch_outs

        return batch_iter_reader