det_mobilenet_v3.py 9.3 KB
Newer Older
W
WenmuZhou 已提交
1
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
L
LDOUBLEV 已提交
2
#
W
WenmuZhou 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
L
LDOUBLEV 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
W
WenmuZhou 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
L
LDOUBLEV 已提交
14 15 16 17 18

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

W
WenmuZhou 已提交
19 20 21 22
import paddle
from paddle import nn
import paddle.nn.functional as F
from paddle import ParamAttr
L
LDOUBLEV 已提交
23 24 25 26

__all__ = ['MobileNetV3']


W
WenmuZhou 已提交
27 28 29 30 31 32 33 34 35 36 37
def make_divisible(v, divisor=8, min_value=None):
    if min_value is None:
        min_value = divisor
    new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
    if new_v < 0.9 * v:
        new_v += divisor
    return new_v


class MobileNetV3(nn.Layer):
    def __init__(self, in_channels=3, model_name='large', scale=0.5, **kwargs):
L
LDOUBLEV 已提交
38 39 40 41 42
        """
        the MobilenetV3 backbone network for detection module.
        Args:
            params(dict): the super parameters for build network
        """
W
WenmuZhou 已提交
43
        super(MobileNetV3, self).__init__()
L
LDOUBLEV 已提交
44
        if model_name == "large":
W
WenmuZhou 已提交
45
            cfg = [
L
LDOUBLEV 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
                # k, exp, c,  se,     nl,  s,
                [3, 16, 16, False, 'relu', 1],
                [3, 64, 24, False, 'relu', 2],
                [3, 72, 24, False, 'relu', 1],
                [5, 72, 40, True, 'relu', 2],
                [5, 120, 40, True, 'relu', 1],
                [5, 120, 40, True, 'relu', 1],
                [3, 240, 80, False, 'hard_swish', 2],
                [3, 200, 80, False, 'hard_swish', 1],
                [3, 184, 80, False, 'hard_swish', 1],
                [3, 184, 80, False, 'hard_swish', 1],
                [3, 480, 112, True, 'hard_swish', 1],
                [3, 672, 112, True, 'hard_swish', 1],
                [5, 672, 160, True, 'hard_swish', 2],
                [5, 960, 160, True, 'hard_swish', 1],
                [5, 960, 160, True, 'hard_swish', 1],
            ]
W
WenmuZhou 已提交
63
            cls_ch_squeeze = 960
L
LDOUBLEV 已提交
64
        elif model_name == "small":
W
WenmuZhou 已提交
65
            cfg = [
L
LDOUBLEV 已提交
66 67 68 69 70 71 72 73 74 75 76 77 78
                # k, exp, c,  se,     nl,  s,
                [3, 16, 16, True, 'relu', 2],
                [3, 72, 24, False, 'relu', 2],
                [3, 88, 24, False, 'relu', 1],
                [5, 96, 40, True, 'hard_swish', 2],
                [5, 240, 40, True, 'hard_swish', 1],
                [5, 240, 40, True, 'hard_swish', 1],
                [5, 120, 48, True, 'hard_swish', 1],
                [5, 144, 48, True, 'hard_swish', 1],
                [5, 288, 96, True, 'hard_swish', 2],
                [5, 576, 96, True, 'hard_swish', 1],
                [5, 576, 96, True, 'hard_swish', 1],
            ]
W
WenmuZhou 已提交
79
            cls_ch_squeeze = 576
L
LDOUBLEV 已提交
80 81 82 83 84
        else:
            raise NotImplementedError("mode[" + model_name +
                                      "_model] is not implemented!")

        supported_scale = [0.35, 0.5, 0.75, 1.0, 1.25]
W
WenmuZhou 已提交
85 86 87 88 89 90 91 92
        assert scale in supported_scale, \
            "supported scale are {} but input scale is {}".format(supported_scale, scale)
        inplanes = 16
        # conv1
        self.conv = ConvBNLayer(
            in_channels=in_channels,
            out_channels=make_divisible(inplanes * scale),
            kernel_size=3,
L
LDOUBLEV 已提交
93 94
            stride=2,
            padding=1,
W
WenmuZhou 已提交
95
            groups=1,
L
LDOUBLEV 已提交
96 97 98
            if_act=True,
            act='hard_swish',
            name='conv1')
W
WenmuZhou 已提交
99 100 101 102

        self.stages = []
        self.out_channels = []
        block_list = []
L
LDOUBLEV 已提交
103
        i = 0
W
WenmuZhou 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
        inplanes = make_divisible(inplanes * scale)
        for (k, exp, c, se, nl, s) in cfg:
            if s == 2 and i > 2:
                self.out_channels.append(inplanes)
                self.stages.append(nn.Sequential(*block_list))
                block_list = []
            block_list.append(
                ResidualUnit(
                    in_channels=inplanes,
                    mid_channels=make_divisible(scale * exp),
                    out_channels=make_divisible(scale * c),
                    kernel_size=k,
                    stride=s,
                    use_se=se,
                    act=nl,
                    name="conv" + str(i + 2)))
            inplanes = make_divisible(scale * c)
L
LDOUBLEV 已提交
121
            i += 1
W
WenmuZhou 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
        block_list.append(
            ConvBNLayer(
                in_channels=inplanes,
                out_channels=make_divisible(scale * cls_ch_squeeze),
                kernel_size=1,
                stride=1,
                padding=0,
                groups=1,
                if_act=True,
                act='hard_swish',
                name='conv_last'))
        self.stages.append(nn.Sequential(*block_list))
        self.out_channels.append(make_divisible(scale * cls_ch_squeeze))
        for i, stage in enumerate(self.stages):
            self.add_sublayer(sublayer=stage, name="stage{}".format(i))

    def forward(self, x):
        x = self.conv(x)
        out_list = []
        for stage in self.stages:
            x = stage(x)
            out_list.append(x)
        return out_list


class ConvBNLayer(nn.Layer):
    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 stride,
                 padding,
                 groups=1,
                 if_act=True,
                 act=None,
                 name=None):
        super(ConvBNLayer, self).__init__()
        self.if_act = if_act
        self.act = act
        self.conv = nn.Conv2d(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=kernel_size,
L
LDOUBLEV 已提交
165 166
            stride=stride,
            padding=padding,
W
WenmuZhou 已提交
167 168
            groups=groups,
            weight_attr=ParamAttr(name=name + '_weights'),
L
LDOUBLEV 已提交
169
            bias_attr=False)
W
WenmuZhou 已提交
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210

        self.bn = nn.BatchNorm(
            num_channels=out_channels,
            act=None,
            param_attr=ParamAttr(name=name + "_bn_scale"),
            bias_attr=ParamAttr(name=name + "_bn_offset"),
            moving_mean_name=name + "_bn_mean",
            moving_variance_name=name + "_bn_variance")

    def forward(self, x):
        x = self.conv(x)
        x = self.bn(x)
        if self.if_act:
            if self.act == "relu":
                x = F.relu(x)
            elif self.act == "hard_swish":
                x = F.hard_swish(x)
            else:
                print("The activation function is selected incorrectly.")
                exit()
        return x


class ResidualUnit(nn.Layer):
    def __init__(self,
                 in_channels,
                 mid_channels,
                 out_channels,
                 kernel_size,
                 stride,
                 use_se,
                 act=None,
                 name=''):
        super(ResidualUnit, self).__init__()
        self.if_shortcut = stride == 1 and in_channels == out_channels
        self.if_se = use_se

        self.expand_conv = ConvBNLayer(
            in_channels=in_channels,
            out_channels=mid_channels,
            kernel_size=1,
L
LDOUBLEV 已提交
211 212 213 214
            stride=1,
            padding=0,
            if_act=True,
            act=act,
W
WenmuZhou 已提交
215 216 217 218 219
            name=name + "_expand")
        self.bottleneck_conv = ConvBNLayer(
            in_channels=mid_channels,
            out_channels=mid_channels,
            kernel_size=kernel_size,
L
LDOUBLEV 已提交
220
            stride=stride,
W
WenmuZhou 已提交
221 222
            padding=int((kernel_size - 1) // 2),
            groups=mid_channels,
L
LDOUBLEV 已提交
223 224
            if_act=True,
            act=act,
W
WenmuZhou 已提交
225 226 227 228 229 230 231
            name=name + "_depthwise")
        if self.if_se:
            self.mid_se = SEModule(mid_channels, name=name + "_se")
        self.linear_conv = ConvBNLayer(
            in_channels=mid_channels,
            out_channels=out_channels,
            kernel_size=1,
L
LDOUBLEV 已提交
232 233 234
            stride=1,
            padding=0,
            if_act=False,
W
WenmuZhou 已提交
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
            act=None,
            name=name + "_linear")

    def forward(self, inputs):
        x = self.expand_conv(inputs)
        x = self.bottleneck_conv(x)
        if self.if_se:
            x = self.mid_se(x)
        x = self.linear_conv(x)
        if self.if_shortcut:
            x = paddle.elementwise_add(inputs, x)
        return x


class SEModule(nn.Layer):
    def __init__(self, in_channels, reduction=4, name=""):
        super(SEModule, self).__init__()
        self.avg_pool = nn.Pool2D(
            pool_type="avg", global_pooling=True, use_cudnn=False)
        self.conv1 = nn.Conv2d(
            in_channels=in_channels,
            out_channels=in_channels // reduction,
            kernel_size=1,
            stride=1,
            padding=0,
            weight_attr=ParamAttr(name=name + "_1_weights"),
            bias_attr=ParamAttr(name=name + "_1_offset"))
        self.conv2 = nn.Conv2d(
            in_channels=in_channels // reduction,
            out_channels=in_channels,
            kernel_size=1,
            stride=1,
            padding=0,
            weight_attr=ParamAttr(name + "_2_weights"),
            bias_attr=ParamAttr(name=name + "_2_offset"))

    def forward(self, inputs):
        outputs = self.avg_pool(inputs)
        outputs = self.conv1(outputs)
        outputs = F.relu(outputs)
        outputs = self.conv2(outputs)
        outputs = F.hard_sigmoid(outputs)
D
dyning 已提交
277
        return inputs * outputs