combined_loss.py 2.5 KB
Newer Older
littletomatodonkey's avatar
littletomatodonkey 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import paddle.nn as nn

18 19 20
from .rec_ctc_loss import CTCLoss
from .center_loss import CenterLoss
from .ace_loss import ACELoss
A
andyjpaddle 已提交
21
from .rec_sar_loss import SARLoss
22

littletomatodonkey's avatar
littletomatodonkey 已提交
23
from .distillation_loss import DistillationCTCLoss
A
andyjpaddle 已提交
24
from .distillation_loss import DistillationSARLoss
littletomatodonkey's avatar
littletomatodonkey 已提交
25
from .distillation_loss import DistillationDMLLoss
L
LDOUBLEV 已提交
26
from .distillation_loss import DistillationDistanceLoss, DistillationDBLoss, DistillationDilaDBLoss
littletomatodonkey's avatar
littletomatodonkey 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52


class CombinedLoss(nn.Layer):
    """
    CombinedLoss:
        a combionation of loss function
    """

    def __init__(self, loss_config_list=None):
        super().__init__()
        self.loss_func = []
        self.loss_weight = []
        assert isinstance(loss_config_list, list), (
            'operator config should be a list')
        for config in loss_config_list:
            assert isinstance(config,
                              dict) and len(config) == 1, "yaml format error"
            name = list(config)[0]
            param = config[name]
            assert "weight" in param, "weight must be in param, but param just contains {}".format(
                param.keys())
            self.loss_weight.append(param.pop("weight"))
            self.loss_func.append(eval(name)(**param))

    def forward(self, input, batch, **kargs):
        loss_dict = {}
L
LDOUBLEV 已提交
53
        loss_all = 0.
littletomatodonkey's avatar
littletomatodonkey 已提交
54 55 56 57
        for idx, loss_func in enumerate(self.loss_func):
            loss = loss_func(input, batch, **kargs)
            if isinstance(loss, paddle.Tensor):
                loss = {"loss_{}_{}".format(str(loss), idx): loss}
58

littletomatodonkey's avatar
littletomatodonkey 已提交
59
            weight = self.loss_weight[idx]
60 61 62 63 64 65 66 67

            loss = {key: loss[key] * weight for key in loss}

            if "loss" in loss:
                loss_all += loss["loss"]
            else:
                loss_all += paddle.add_n(list(loss.values()))
            loss_dict.update(loss)
L
LDOUBLEV 已提交
68
        loss_dict["loss"] = loss_all
littletomatodonkey's avatar
littletomatodonkey 已提交
69
        return loss_dict