optimizer.py 7.7 KB
Newer Older
W
WenmuZhou 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

from paddle import optimizer as optim


class Momentum(object):
    """
    Simple Momentum optimizer with velocity state.
    Args:
        learning_rate (float|Variable) - The learning rate used to update parameters.
            Can be a float value or a Variable with one float value as data element.
        momentum (float) - Momentum factor.
        regularization (WeightDecayRegularizer, optional) - The strategy of regularization.
    """

Z
zhoujun 已提交
33 34 35 36 37 38
    def __init__(self,
                 learning_rate,
                 momentum,
                 weight_decay=None,
                 grad_clip=None,
                 **args):
W
WenmuZhou 已提交
39 40 41 42
        super(Momentum, self).__init__()
        self.learning_rate = learning_rate
        self.momentum = momentum
        self.weight_decay = weight_decay
Z
zhoujun 已提交
43
        self.grad_clip = grad_clip
W
WenmuZhou 已提交
44

T
Topdu 已提交
45
    def __call__(self, model):
46 47 48
        train_params = [
            param for param in model.parameters() if param.trainable is True
        ]
W
WenmuZhou 已提交
49 50 51
        opt = optim.Momentum(
            learning_rate=self.learning_rate,
            momentum=self.momentum,
Z
zhoujun 已提交
52 53
            weight_decay=self.weight_decay,
            grad_clip=self.grad_clip,
54
            parameters=train_params)
W
WenmuZhou 已提交
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
        return opt


class Adam(object):
    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
                 epsilon=1e-08,
                 parameter_list=None,
                 weight_decay=None,
                 grad_clip=None,
                 name=None,
                 lazy_mode=False,
                 **kwargs):
        self.learning_rate = learning_rate
        self.beta1 = beta1
        self.beta2 = beta2
        self.epsilon = epsilon
        self.parameter_list = parameter_list
        self.learning_rate = learning_rate
        self.weight_decay = weight_decay
        self.grad_clip = grad_clip
        self.name = name
        self.lazy_mode = lazy_mode

T
Topdu 已提交
81
    def __call__(self, model):
82 83 84
        train_params = [
            param for param in model.parameters() if param.trainable is True
        ]
W
WenmuZhou 已提交
85 86 87 88 89 90 91 92 93
        opt = optim.Adam(
            learning_rate=self.learning_rate,
            beta1=self.beta1,
            beta2=self.beta2,
            epsilon=self.epsilon,
            weight_decay=self.weight_decay,
            grad_clip=self.grad_clip,
            name=self.name,
            lazy_mode=self.lazy_mode,
94
            parameters=train_params)
W
WenmuZhou 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
        return opt


class RMSProp(object):
    """
    Root Mean Squared Propagation (RMSProp) is an unpublished, adaptive learning rate method.
    Args:
        learning_rate (float|Variable) - The learning rate used to update parameters.
            Can be a float value or a Variable with one float value as data element.
        momentum (float) - Momentum factor.
        rho (float) - rho value in equation.
        epsilon (float) - avoid division by zero, default is 1e-6.
        regularization (WeightDecayRegularizer, optional) - The strategy of regularization.
    """

    def __init__(self,
                 learning_rate,
Z
zhoujun 已提交
112
                 momentum=0.0,
W
WenmuZhou 已提交
113 114 115
                 rho=0.95,
                 epsilon=1e-6,
                 weight_decay=None,
Z
zhoujun 已提交
116
                 grad_clip=None,
W
WenmuZhou 已提交
117 118 119 120 121 122 123
                 **args):
        super(RMSProp, self).__init__()
        self.learning_rate = learning_rate
        self.momentum = momentum
        self.rho = rho
        self.epsilon = epsilon
        self.weight_decay = weight_decay
Z
zhoujun 已提交
124
        self.grad_clip = grad_clip
W
WenmuZhou 已提交
125

T
Topdu 已提交
126
    def __call__(self, model):
127 128 129
        train_params = [
            param for param in model.parameters() if param.trainable is True
        ]
W
WenmuZhou 已提交
130 131 132 133 134 135
        opt = optim.RMSProp(
            learning_rate=self.learning_rate,
            momentum=self.momentum,
            rho=self.rho,
            epsilon=self.epsilon,
            weight_decay=self.weight_decay,
Z
zhoujun 已提交
136
            grad_clip=self.grad_clip,
137
            parameters=train_params)
W
WenmuZhou 已提交
138
        return opt
T
tink2123 已提交
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159


class Adadelta(object):
    def __init__(self,
                 learning_rate=0.001,
                 epsilon=1e-08,
                 rho=0.95,
                 parameter_list=None,
                 weight_decay=None,
                 grad_clip=None,
                 name=None,
                 **kwargs):
        self.learning_rate = learning_rate
        self.epsilon = epsilon
        self.rho = rho
        self.parameter_list = parameter_list
        self.learning_rate = learning_rate
        self.weight_decay = weight_decay
        self.grad_clip = grad_clip
        self.name = name

T
Topdu 已提交
160
    def __call__(self, model):
161 162 163
        train_params = [
            param for param in model.parameters() if param.trainable is True
        ]
T
tink2123 已提交
164 165 166 167 168 169 170
        opt = optim.Adadelta(
            learning_rate=self.learning_rate,
            epsilon=self.epsilon,
            rho=self.rho,
            weight_decay=self.weight_decay,
            grad_clip=self.grad_clip,
            name=self.name,
171
            parameters=train_params)
T
tink2123 已提交
172
        return opt
173 174 175 176 177 178 179


class AdamW(object):
    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
T
Topdu 已提交
180
                 epsilon=1e-8,
181
                 weight_decay=0.01,
T
Topdu 已提交
182
                 multi_precision=False,
183
                 grad_clip=None,
T
Topdu 已提交
184 185
                 no_weight_decay_name=None,
                 one_dim_param_no_weight_decay=False,
186 187
                 name=None,
                 lazy_mode=False,
T
Topdu 已提交
188 189
                 **args):
        super().__init__()
190 191 192 193
        self.learning_rate = learning_rate
        self.beta1 = beta1
        self.beta2 = beta2
        self.epsilon = epsilon
T
Topdu 已提交
194
        self.grad_clip = grad_clip
195 196 197 198
        self.weight_decay = 0.01 if weight_decay is None else weight_decay
        self.grad_clip = grad_clip
        self.name = name
        self.lazy_mode = lazy_mode
T
Topdu 已提交
199 200 201 202 203 204
        self.multi_precision = multi_precision
        self.no_weight_decay_name_list = no_weight_decay_name.split(
        ) if no_weight_decay_name else []
        self.one_dim_param_no_weight_decay = one_dim_param_no_weight_decay

    def __call__(self, model):
205 206 207
        parameters = [
            param for param in model.parameters() if param.trainable is True
        ]
T
Topdu 已提交
208 209

        self.no_weight_decay_param_name_list = [
210 211
            p.name for n, p in model.named_parameters()
            if any(nd in n for nd in self.no_weight_decay_name_list)
T
Topdu 已提交
212 213 214 215
        ]

        if self.one_dim_param_no_weight_decay:
            self.no_weight_decay_param_name_list += [
216
                p.name for n, p in model.named_parameters() if len(p.shape) == 1
T
Topdu 已提交
217
            ]
218

219 220 221 222 223
        opt = optim.AdamW(
            learning_rate=self.learning_rate,
            beta1=self.beta1,
            beta2=self.beta2,
            epsilon=self.epsilon,
T
Topdu 已提交
224
            parameters=parameters,
225
            weight_decay=self.weight_decay,
T
Topdu 已提交
226
            multi_precision=self.multi_precision,
227 228 229
            grad_clip=self.grad_clip,
            name=self.name,
            lazy_mode=self.lazy_mode,
T
Topdu 已提交
230
            apply_decay_param_fun=self._apply_decay_param_fun)
231
        return opt
T
Topdu 已提交
232 233

    def _apply_decay_param_fun(self, name):
234
        return name not in self.no_weight_decay_param_name_list