config.py 7.1 KB
Newer Older
W
weishengyu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import yaml
import os
from argparse import ArgumentParser, RawDescriptionHelpFormatter


def override(dl, ks, v):
    """
    Recursively replace dict of list

    Args:
        dl(dict or list): dict or list to be replaced
        ks(list): list of keys
        v(str): value to be replaced
    """

    def str2num(v):
        try:
            return eval(v)
        except Exception:
            return v

    assert isinstance(dl, (list, dict)), ("{} should be a list or a dict")
    assert len(ks) > 0, ('lenght of keys should larger than 0')
    if isinstance(dl, list):
        k = str2num(ks[0])
        if len(ks) == 1:
            assert k < len(dl), ('index({}) out of range({})'.format(k, dl))
            dl[k] = str2num(v)
        else:
            override(dl[k], ks[1:], v)
    else:
        if len(ks) == 1:
            #assert ks[0] in dl, ('{} is not exist in {}'.format(ks[0], dl))
            if not ks[0] in dl:
                logger.warning('A new filed ({}) detected!'.format(ks[0], dl))
            dl[ks[0]] = str2num(v)
        else:
            assert ks[0] in dl, (
                '({}) doesn\'t exist in {}, a new dict field is invalid'.
                format(ks[0], dl))
            override(dl[ks[0]], ks[1:], v)


def override_config(config, options=None):
    """
    Recursively override the config

    Args:
        config(dict): dict to be replaced
        options(list): list of pairs(key0.key1.idx.key2=value)
            such as: [
                'topk=2',
                'VALID.transforms.1.ResizeImage.resize_short=300'
            ]

    Returns:
        config(dict): replaced config
    """
    if options is not None:
        for opt in options:
            assert isinstance(opt, str), (
                "option({}) should be a str".format(opt))
            assert "=" in opt, (
                "option({}) should contain a ="
                "to distinguish between key and value".format(opt))
            pair = opt.split('=')
            assert len(pair) == 2, ("there can be only a = in the option")
            key, value = pair
            keys = key.split('.')
            override(config, keys, value)

    return config


class ArgsParser(ArgumentParser):
    def __init__(self):
        super(ArgsParser, self).__init__(
            formatter_class=RawDescriptionHelpFormatter)
        self.add_argument("-c", "--config", help="configuration file to use")
        self.add_argument(
            "-t", "--tag", default="0", help="tag for marking worker")
        self.add_argument(
            '-o',
            '--override',
            action='append',
            default=[],
            help='config options to be overridden')
W
dbg  
weishengyu 已提交
101 102 103 104 105 106
        self.add_argument(
            "--style_image", default="examples/style_images/1.jpg", help="tag for marking worker")
        self.add_argument(
            "--text_corpus", default="PaddleOCR", help="tag for marking worker")
        self.add_argument(
            "--language", default="en", help="tag for marking worker")
W
weishengyu 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

    def parse_args(self, argv=None):
        args = super(ArgsParser, self).parse_args(argv)
        assert args.config is not None, \
            "Please specify --config=configure_file_path."
        return args


def load_config(file_path):
    """
    Load config from yml/yaml file.
    Args:
        file_path (str): Path of the config file to be loaded.
    Returns: config
    """
    ext = os.path.splitext(file_path)[1]
    assert ext in ['.yml', '.yaml'], "only support yaml files for now"
    with open(file_path, 'rb') as f:
        config = yaml.load(f, Loader=yaml.Loader)

    return config


def gen_config():
    base_config = {
        "Global": {
            "algorithm": "SRNet",
            "use_gpu": True,
            "start_epoch": 1,
            "stage1_epoch_num": 100,
            "stage2_epoch_num": 100,
            "log_smooth_window": 20,
            "print_batch_step": 2,
            "save_model_dir": "./output/SRNet",
            "use_visualdl": False,
            "save_epoch_step": 10,
            "vgg_pretrain": "./pretrained/VGG19_pretrained",
            "vgg_load_static_pretrain": True
        },
        "Architecture": {
            "model_type": "data_aug",
            "algorithm": "SRNet",
            "net_g": {
                "name": "srnet_net_g",
                "encode_dim": 64,
                "norm": "batch",
                "use_dropout": False,
                "init_type": "xavier",
                "init_gain": 0.02,
                "use_dilation": 1
            },
            # input_nc, ndf, netD,
            # n_layers_D=3, norm='instance', use_sigmoid=False, init_type='normal', init_gain=0.02, gpu_id='cuda:0'
            "bg_discriminator": {
                "name": "srnet_bg_discriminator",
                "input_nc": 6,
                "ndf": 64,
                "netD": "basic",
                "norm": "none",
                "init_type": "xavier",
            },
            "fusion_discriminator": {
                "name": "srnet_fusion_discriminator",
                "input_nc": 6,
                "ndf": 64,
                "netD": "basic",
                "norm": "none",
                "init_type": "xavier",
            }
        },
        "Loss": {
            "lamb": 10,
            "perceptual_lamb": 1,
            "muvar_lamb": 50,
            "style_lamb": 500
        },
        "Optimizer": {
            "name": "Adam",
            "learning_rate": {
                "name": "lambda",
                "lr": 0.0002,
                "lr_decay_iters": 50
            },
            "beta1": 0.5,
            "beta2": 0.999,
        },
        "Train": {
            "batch_size_per_card": 8,
            "num_workers_per_card": 4,
            "dataset": {
                "delimiter": "\t",
                "data_dir": "/",
                "label_file": "tmp/label.txt",
                "transforms": [{
                    "DecodeImage": {
                        "to_rgb": True,
                        "to_np": False,
                        "channel_first": False
                    }
                }, {
                    "NormalizeImage": {
                        "scale": 1. / 255.,
                        "mean": [0.485, 0.456, 0.406],
                        "std": [0.229, 0.224, 0.225],
                        "order": None
                    }
                }, {
                    "ToCHWImage": None
                }]
            }
        }
    }
    with open("config.yml", "w") as f:
        yaml.dump(base_config, f)


if __name__ == '__main__':
    gen_config()