prepare.sh 4.9 KB
Newer Older
L
LDOUBLEV 已提交
1 2
#!/bin/bash
FILENAME=$1
M
MissPenguin 已提交
3
# MODE be one of ['lite_train_infer' 'whole_infer' 'whole_train_infer', 'infer', 'cpp_infer']
L
LDOUBLEV 已提交
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
MODE=$2

dataline=$(cat ${FILENAME})

# parser params
IFS=$'\n'
lines=(${dataline})
function func_parser_key(){
    strs=$1
    IFS=":"
    array=(${strs})
    tmp=${array[0]}
    echo ${tmp}
}
function func_parser_value(){
    strs=$1
    IFS=":"
    array=(${strs})
    tmp=${array[1]}
    echo ${tmp}
}
IFS=$'\n'
# The training params
L
LDOUBLEV 已提交
27
model_name=$(func_parser_value "${lines[1]}")
L
LDOUBLEV 已提交
28

L
LDOUBLEV 已提交
29
trainer_list=$(func_parser_value "${lines[14]}")
D
Double_V 已提交
30

D
Double_V 已提交
31 32
# MODE be one of ['lite_train_infer' 'whole_infer' 'whole_train_infer']
MODE=$2
L
LDOUBLEV 已提交
33

D
Double_V 已提交
34 35 36 37
if [ ${MODE} = "lite_train_infer" ];then
    # pretrain lite train data
    wget -nc -P  ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_5_pretrained.pdparams
    rm -rf ./train_data/icdar2015
T
tink2123 已提交
38
    rm -rf ./train_data/ic15_data
D
Double_V 已提交
39
    wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/icdar2015_lite.tar
T
tink2123 已提交
40 41 42
    wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ic15_data.tar # todo change to bcebos

    cd ./train_data/ && tar xf icdar2015_lite.tar && tar xf ic15_data.tar
D
Double_V 已提交
43 44 45 46 47
    ln -s ./icdar2015_lite ./icdar2015
    cd ../
elif [ ${MODE} = "whole_train_infer" ];then
    wget -nc -P  ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_5_pretrained.pdparams
    rm -rf ./train_data/icdar2015
T
tink2123 已提交
48
    rm -rf ./train_data/ic15_data
D
Double_V 已提交
49
    wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/icdar2015.tar
T
tink2123 已提交
50 51
    wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ic15_data.tar
    cd ./train_data/ && tar xf icdar2015.tar && tar xf ic15_data.tar && cd ../
D
Double_V 已提交
52 53 54
elif [ ${MODE} = "whole_infer" ];then
    wget -nc -P  ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_5_pretrained.pdparams
    rm -rf ./train_data/icdar2015
T
tink2123 已提交
55
    rm -rf ./train_data/ic15_data
D
Double_V 已提交
56
    wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/icdar2015_infer.tar
T
tink2123 已提交
57 58
    wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ic15_data.tar
    cd ./train_data/ && tar xf icdar2015_infer.tar && tar xf ic15_data.tar
D
Double_V 已提交
59 60
    ln -s ./icdar2015_infer ./icdar2015
    cd ../
M
MissPenguin 已提交
61
elif [ ${MODE} = "infer" ] || [ ${MODE} = "cpp_infer" ];then
T
tink2123 已提交
62
    if [ ${model_name} = "ocr_det" ]; then
D
Double_V 已提交
63
        eval_model_name="ch_ppocr_mobile_v2.0_det_infer"
T
tink2123 已提交
64
        rm -rf ./train_data/icdar2015
M
MissPenguin 已提交
65
        wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ch_det_data_50.tar
D
Double_V 已提交
66 67 68
        wget -nc  -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar
        cd ./inference && tar xf ${eval_model_name}.tar && tar xf ch_det_data_50.tar && cd ../
    else 
T
tink2123 已提交
69
        rm -rf ./train_data/ic15_data
T
tink2123 已提交
70
        eval_model_name="ch_ppocr_mobile_v2.0_rec_infer"
T
tink2123 已提交
71
        wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ic15_data.tar
T
tink2123 已提交
72
        wget -nc  -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar
T
tink2123 已提交
73
        cd ./inference && tar xf ${eval_model_name}.tar && tar xf ic15_data.tar && cd ../
D
Double_V 已提交
74 75
    fi 
fi
T
tink2123 已提交
76

M
MissPenguin 已提交
77
if [ ${MODE} = "cpp_infer" ];then
M
refine  
MissPenguin 已提交
78
    echo "################### build opencv ###################"
M
MissPenguin 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
    cd deploy/cpp_infer
    rm -rf 3.4.7.tar.gz opencv-3.4.7/
    wget https://github.com/opencv/opencv/archive/3.4.7.tar.gz
    tar -xf 3.4.7.tar.gz

    cd opencv-3.4.7/
    install_path=$(pwd)/opencv-3.4.7/opencv3

    rm -rf build
    mkdir build
    cd build

    cmake .. \
        -DCMAKE_INSTALL_PREFIX=${install_path} \
        -DCMAKE_BUILD_TYPE=Release \
        -DBUILD_SHARED_LIBS=OFF \
        -DWITH_IPP=OFF \
        -DBUILD_IPP_IW=OFF \
        -DWITH_LAPACK=OFF \
        -DWITH_EIGEN=OFF \
        -DCMAKE_INSTALL_LIBDIR=lib64 \
        -DWITH_ZLIB=ON \
        -DBUILD_ZLIB=ON \
        -DWITH_JPEG=ON \
        -DBUILD_JPEG=ON \
        -DWITH_PNG=ON \
        -DBUILD_PNG=ON \
        -DWITH_TIFF=ON \
        -DBUILD_TIFF=ON

    make -j
    make install
    cd ../
M
refine  
MissPenguin 已提交
112
    echo "################### build opencv finished ###################"
M
MissPenguin 已提交
113 114


M
refine  
MissPenguin 已提交
115
    echo "################### build PaddleOCR demo ####################"
M
MissPenguin 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
    OPENCV_DIR=$(pwd)/opencv-3.4.7/opencv3/
    LIB_DIR=$(pwd)/Paddle/build/paddle_inference_install_dir/
    CUDA_LIB_DIR=/usr/local/cuda/lib64/
    CUDNN_LIB_DIR=/usr/lib/x86_64-linux-gnu/

    BUILD_DIR=build
    rm -rf ${BUILD_DIR}
    mkdir ${BUILD_DIR}
    cd ${BUILD_DIR}
    cmake .. \
        -DPADDLE_LIB=${LIB_DIR} \
        -DWITH_MKL=ON \
        -DWITH_GPU=OFF \
        -DWITH_STATIC_LIB=OFF \
        -DWITH_TENSORRT=OFF \
        -DOPENCV_DIR=${OPENCV_DIR} \
        -DCUDNN_LIB=${CUDNN_LIB_DIR} \
        -DCUDA_LIB=${CUDA_LIB_DIR} \
        -DTENSORRT_DIR=${TENSORRT_DIR} \

    make -j
M
refine  
MissPenguin 已提交
137
    echo "################### build PaddleOCR demo finished ###################"
M
MissPenguin 已提交
138
fi