predict_system.py 5.4 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16 17 18
import os
import sys
__dir__ = os.path.dirname(__file__)
sys.path.append(__dir__)
sys.path.append(os.path.join(__dir__, '../..'))
L
LDOUBLEV 已提交
19 20

import tools.infer.utility as utility
L
LDOUBLEV 已提交
21 22 23
from ppocr.utils.utility import initial_logger
logger = initial_logger()
import cv2
L
LDOUBLEV 已提交
24 25
import tools.infer.predict_det as predict_det
import tools.infer.predict_rec as predict_rec
L
LDOUBLEV 已提交
26 27 28 29
import copy
import numpy as np
import math
import time
L
LDOUBLEV 已提交
30 31 32
from ppocr.utils.utility import get_image_file_list
from PIL import Image
from tools.infer.utility import draw_ocr
33
from tools.infer.utility import draw_ocr_box_txt
L
LDOUBLEV 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75


class TextSystem(object):
    def __init__(self, args):
        self.text_detector = predict_det.TextDetector(args)
        self.text_recognizer = predict_rec.TextRecognizer(args)

    def get_rotate_crop_image(self, img, points):
        img_height, img_width = img.shape[0:2]
        left = int(np.min(points[:, 0]))
        right = int(np.max(points[:, 0]))
        top = int(np.min(points[:, 1]))
        bottom = int(np.max(points[:, 1]))
        img_crop = img[top:bottom, left:right, :].copy()
        points[:, 0] = points[:, 0] - left
        points[:, 1] = points[:, 1] - top
        img_crop_width = int(np.linalg.norm(points[0] - points[1]))
        img_crop_height = int(np.linalg.norm(points[0] - points[3]))
        pts_std = np.float32([[0, 0], [img_crop_width, 0],\
            [img_crop_width, img_crop_height], [0, img_crop_height]])
        M = cv2.getPerspectiveTransform(points, pts_std)
        dst_img = cv2.warpPerspective(
            img_crop,
            M, (img_crop_width, img_crop_height),
            borderMode=cv2.BORDER_REPLICATE)
        dst_img_height, dst_img_width = dst_img.shape[0:2]
        if dst_img_height * 1.0 / dst_img_width >= 1.5:
            dst_img = np.rot90(dst_img)
        return dst_img

    def print_draw_crop_rec_res(self, img_crop_list, rec_res):
        bbox_num = len(img_crop_list)
        for bno in range(bbox_num):
            cv2.imwrite("./output/img_crop_%d.jpg" % bno, img_crop_list[bno])
            print(bno, rec_res[bno])

    def __call__(self, img):
        ori_im = img.copy()
        dt_boxes, elapse = self.text_detector(img)
        if dt_boxes is None:
            return None, None
        img_crop_list = []
76 77 78

        dt_boxes = sorted_boxes(dt_boxes)

L
LDOUBLEV 已提交
79 80 81 82 83
        for bno in range(len(dt_boxes)):
            tmp_box = copy.deepcopy(dt_boxes[bno])
            img_crop = self.get_rotate_crop_image(ori_im, tmp_box)
            img_crop_list.append(img_crop)
        rec_res, elapse = self.text_recognizer(img_crop_list)
84
        # self.print_draw_crop_rec_res(img_crop_list, rec_res)
L
LDOUBLEV 已提交
85 86 87
        return dt_boxes, rec_res


88 89 90 91
def sorted_boxes(dt_boxes):
    """
    Sort text boxes in order from top to bottom, left to right
    args:
T
tink2123 已提交
92
        dt_boxes(array):detected text boxes with shape [4, 2]
93 94 95 96
    return:
        sorted boxes(array) with shape [4, 2]
    """
    num_boxes = dt_boxes.shape[0]
97
    sorted_boxes = sorted(dt_boxes, key=lambda x: (x[0][1], x[0][0]))
98 99 100 101 102 103 104 105 106 107 108
    _boxes = list(sorted_boxes)

    for i in range(num_boxes - 1):
        if abs(_boxes[i+1][0][1] - _boxes[i][0][1]) < 10 and \
            (_boxes[i + 1][0][0] < _boxes[i][0][0]):
            tmp = _boxes[i]
            _boxes[i] = _boxes[i + 1]
            _boxes[i + 1] = tmp
    return _boxes


L
LDOUBLEV 已提交
109 110
if __name__ == "__main__":
    args = utility.parse_args()
L
LDOUBLEV 已提交
111
    image_file_list = get_image_file_list(args.image_dir)
L
LDOUBLEV 已提交
112
    text_sys = TextSystem(args)
L
LDOUBLEV 已提交
113
    is_visualize = True
L
LDOUBLEV 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126
    for image_file in image_file_list:
        img = cv2.imread(image_file)
        if img is None:
            logger.info("error in loading image:{}".format(image_file))
            continue
        starttime = time.time()
        dt_boxes, rec_res = text_sys(img)
        elapse = time.time() - starttime
        print("Predict time of %s: %.3fs" % (image_file, elapse))
        dt_num = len(dt_boxes)
        dt_boxes_final = []
        for dno in range(dt_num):
            text, score = rec_res[dno]
L
LDOUBLEV 已提交
127
            if score >= 0.5:
L
LDOUBLEV 已提交
128 129 130
                text_str = "%s, %.3f" % (text, score)
                print(text_str)
                dt_boxes_final.append(dt_boxes[dno])
L
LDOUBLEV 已提交
131 132 133 134 135 136 137

        if is_visualize:
            image = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
            boxes = dt_boxes
            txts = [rec_res[i][0] for i in range(len(rec_res))]
            scores = [rec_res[i][1] for i in range(len(rec_res))]

138 139
            draw_img = draw_ocr(
                image, boxes, txts, scores, draw_txt=True, drop_score=0.5)
140
            draw_img_save = "./inference_results/"
L
LDOUBLEV 已提交
141 142 143 144
            if not os.path.exists(draw_img_save):
                os.makedirs(draw_img_save)
            cv2.imwrite(
                os.path.join(draw_img_save, os.path.basename(image_file)),
D
dyning 已提交
145
                draw_img[:, :, ::-1])
146 147
            print("The visualized image saved in {}".format(
                os.path.join(draw_img_save, os.path.basename(image_file))))