train.py 4.4 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import sys
L
LDOUBLEV 已提交
21 22 23
__dir__ = os.path.dirname(__file__)
sys.path.append(__dir__)
sys.path.append(os.path.join(__dir__, '..'))
L
LDOUBLEV 已提交
24 25 26 27 28 29 30 31 32 33


def set_paddle_flags(**kwargs):
    for key, value in kwargs.items():
        if os.environ.get(key, None) is None:
            os.environ[key] = str(value)


# NOTE(paddle-dev): All of these flags should be
# set before `import paddle`. Otherwise, it would
T
tink2123 已提交
34
# not take any effect.
L
LDOUBLEV 已提交
35 36 37 38
set_paddle_flags(
    FLAGS_eager_delete_tensor_gb=0,  # enable GC to save memory
)

39
import tools.program as program
L
LDOUBLEV 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
from paddle import fluid
from ppocr.utils.utility import initial_logger
logger = initial_logger()
from ppocr.data.reader_main import reader_main
from ppocr.utils.save_load import init_model
from ppocr.utils.character import CharacterOps


def main():
    config = program.load_config(FLAGS.config)
    program.merge_config(FLAGS.opt)
    logger.info(config)

    # check if set use_gpu=True in paddlepaddle cpu version
    use_gpu = config['Global']['use_gpu']
T
tink2123 已提交
55
    program.check_gpu(use_gpu)
L
LDOUBLEV 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108

    alg = config['Global']['algorithm']
    assert alg in ['EAST', 'DB', 'Rosetta', 'CRNN', 'STARNet', 'RARE']
    if alg in ['Rosetta', 'CRNN', 'STARNet', 'RARE']:
        config['Global']['char_ops'] = CharacterOps(config['Global'])

    place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace()
    startup_program = fluid.Program()
    train_program = fluid.Program()
    train_build_outputs = program.build(
        config, train_program, startup_program, mode='train')
    train_loader = train_build_outputs[0]
    train_fetch_name_list = train_build_outputs[1]
    train_fetch_varname_list = train_build_outputs[2]
    train_opt_loss_name = train_build_outputs[3]

    eval_program = fluid.Program()
    eval_build_outputs = program.build(
        config, eval_program, startup_program, mode='eval')
    eval_fetch_name_list = eval_build_outputs[1]
    eval_fetch_varname_list = eval_build_outputs[2]
    eval_program = eval_program.clone(for_test=True)

    train_reader = reader_main(config=config, mode="train")
    train_loader.set_sample_list_generator(train_reader, places=place)

    eval_reader = reader_main(config=config, mode="eval")

    exe = fluid.Executor(place)
    exe.run(startup_program)

    # compile program for multi-devices
    train_compile_program = program.create_multi_devices_program(
        train_program, train_opt_loss_name)
    init_model(config, train_program, exe)

    train_info_dict = {'compile_program':train_compile_program,\
        'train_program':train_program,\
        'reader':train_loader,\
        'fetch_name_list':train_fetch_name_list,\
        'fetch_varname_list':train_fetch_varname_list}

    eval_info_dict = {'program':eval_program,\
        'reader':eval_reader,\
        'fetch_name_list':eval_fetch_name_list,\
        'fetch_varname_list':eval_fetch_varname_list}

    if alg in ['EAST', 'DB']:
        program.train_eval_det_run(config, exe, train_info_dict, eval_info_dict)
    else:
        program.train_eval_rec_run(config, exe, train_info_dict, eval_info_dict)


109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
def test_reader():
    config = program.load_config(FLAGS.config)
    program.merge_config(FLAGS.opt)
    print(config)
    train_reader = reader_main(config=config, mode="train")
    import time
    starttime = time.time()
    count = 0
    try:
        for data in train_reader():
            count += 1
            if count % 1 == 0:
                batch_time = time.time() - starttime
                starttime = time.time()
                print("reader:", count, len(data), batch_time)
    except Exception as e:
L
LDOUBLEV 已提交
125 126
        logger.info(e)
    logger.info("finish reader: {}, Success!".format(count))
127 128


L
LDOUBLEV 已提交
129 130 131 132 133
if __name__ == '__main__':
    parser = program.ArgsParser()
    FLAGS = parser.parse_args()
    main()
#     test_reader()