README_en.md 15.4 KB
Newer Older
1 2
English | [简体中文](README.md)

X
xxxpsyduck 已提交
3
## INTRODUCTION
4 5
PaddleOCR aims to create a rich, leading, and practical OCR tools that help users train better models and apply them into practice.

T
tink2123 已提交
6 7
**Recent updates**
- 2020.7.9 Add recognition model to support space, [recognition result](#space Chinese OCR results)
8
- 2020.6.8 Add [dataset](./doc/doc_en/datasets_en.md) and keep updating
9 10
- 2020.6.5 Support exporting `attention` model to `inference_model`
- 2020.6.5 Support separate prediction and recognition, output result score
X
xxxpsyduck 已提交
11
- 2020.5.30 Provide lightweight Chinese OCR online experience
12
- 2020.5.30 Model prediction and training supported on Windows system
13
- [more](./doc/doc_en/update_en.md)
X
xxxpsyduck 已提交
14

X
xxxpsyduck 已提交
15 16
## FEATURES
- Lightweight Chinese OCR model, total model size is only 8.6M
17 18 19 20
    - Single model supports Chinese and English numbers combination recognition, vertical text recognition, long text recognition
    - Detection model DB (4.1M) + recognition model CRNN (4.5M)
- Various text detection algorithms: EAST, DB
- Various text recognition algorithms: Rosetta, CRNN, STAR-Net, RARE
X
xxxpsyduck 已提交
21

22
### Supported Chinese models list:
X
xxxpsyduck 已提交
23

T
tink2123 已提交
24 25
|Model Name|Description |Detection Model link|Recognition Model link| Support for space Recognition Model link|
|-|-|-|-|-|
X
xxxpsyduck 已提交
26
|chinese_db_crnn_mobile|lightweight Chinese OCR model|[inference model](https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db_infer.tar) & [pre-trained model](https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db.tar)|[inference model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_infer.tar) & [pre-trained model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn.tar)|
27
|chinese_db_crnn_server|General Chinese OCR model|[inference model](https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db_infer.tar) & [pre-trained model](https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db.tar)|[inference model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_infer.tar) & [pre-trained model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn.tar)|
X
xxxpsyduck 已提交
28 29


30
For testing our Chinese OCR online:https://www.paddlepaddle.org.cn/hub/scene/ocr
X
xxxpsyduck 已提交
31

X
xxxpsyduck 已提交
32
**You can also quickly experience the lightweight Chinese OCR and General Chinese OCR models as follows:**
X
xxxpsyduck 已提交
33

X
xxxpsyduck 已提交
34
## **LIGHTWEIGHT CHINESE OCR AND GENERAL CHINESE OCR INFERENCE**
X
xxxpsyduck 已提交
35

36
![](doc/imgs_results/11.jpg)
X
xxxpsyduck 已提交
37

X
xxxpsyduck 已提交
38
The picture above is the result of our lightweight Chinese OCR model. For more testing results, please see the end of the article [lightweight Chinese OCR results](#lightweight-Chinese-OCR-results) and [General Chinese OCR results](#General-Chinese-OCR-results).
X
xxxpsyduck 已提交
39

X
xxxpsyduck 已提交
40
#### 1. ENVIRONMENT CONFIGURATION
X
xxxpsyduck 已提交
41

42
Please see [Quick installation](./doc/doc_en/installation_en.md)
X
xxxpsyduck 已提交
43

X
xxxpsyduck 已提交
44
#### 2. DOWNLOAD INFERENCE MODELS
X
xxxpsyduck 已提交
45

X
xxxpsyduck 已提交
46
#### (1) Download lightweight Chinese OCR models
47
*If wget is not installed in the windows system, you can copy the link to the browser to download the model. After model downloaded, unzip it and place it in the corresponding directory*
X
xxxpsyduck 已提交
48 49 50

```
mkdir inference && cd inference
X
xxxpsyduck 已提交
51
# Download the detection part of the lightweight Chinese OCR and decompress it
X
xxxpsyduck 已提交
52
wget https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db_infer.tar && tar xf ch_det_mv3_db_infer.tar
X
xxxpsyduck 已提交
53
# Download the recognition part of the lightweight Chinese OCR and decompress it
X
xxxpsyduck 已提交
54 55 56
wget https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_infer.tar && tar xf ch_rec_mv3_crnn_infer.tar
cd ..
```
57
#### (2) Download General Chinese OCR models
X
xxxpsyduck 已提交
58 59
```
mkdir inference && cd inference
60
# Download the detection part of the general Chinese OCR model and decompress it
X
xxxpsyduck 已提交
61
wget https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db_infer.tar && tar xf ch_det_r50_vd_db_infer.tar
62
# Download the recognition part of the generic Chinese OCR model and decompress it
X
xxxpsyduck 已提交
63 64 65 66
wget https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_infer.tar && tar xf ch_rec_r34_vd_crnn_infer.tar
cd ..
```

X
xxxpsyduck 已提交
67
#### 3. SINGLE IMAGE AND BATCH PREDICTION
X
xxxpsyduck 已提交
68

69
The following code implements text detection and recognition inference tandemly. When performing prediction, you need to specify the path of a single image or image folder through the parameter `image_dir`, the parameter `det_model_dir` specifies the path to detection model, and the parameter `rec_model_dir` specifies the path to the recognition model. The visual prediction results are saved to the `./inference_results` folder by default.
X
xxxpsyduck 已提交
70

71
```bash
T
revert  
tink2123 已提交
72

73
# Prediction on a single image by specifying image path to image_dir
X
xxxpsyduck 已提交
74 75
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/11.jpg" --det_model_dir="./inference/ch_det_mv3_db/"  --rec_model_dir="./inference/ch_rec_mv3_crnn/"

76
# Prediction on a batch of images by specifying image folder path to image_dir
X
xxxpsyduck 已提交
77 78
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/" --det_model_dir="./inference/ch_det_mv3_db/"  --rec_model_dir="./inference/ch_rec_mv3_crnn/"

79
# If you want to use CPU for prediction, you need to set the use_gpu parameter to False
X
xxxpsyduck 已提交
80 81 82
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/11.jpg" --det_model_dir="./inference/ch_det_mv3_db/"  --rec_model_dir="./inference/ch_rec_mv3_crnn/" --use_gpu=False
```

83
To run inference of the Generic Chinese OCR model, follow these steps above to download the corresponding models and update the relevant parameters. Examples are as follows:
X
xxxpsyduck 已提交
84
```
85
# Prediction on a single image by specifying image path to image_dir
X
xxxpsyduck 已提交
86 87 88
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/11.jpg" --det_model_dir="./inference/ch_det_r50_vd_db/"  --rec_model_dir="./inference/ch_rec_r34_vd_crnn/"
```

89
For more text detection and recognition models, please refer to the document [Inference](./doc/doc_en/inference_en.md)
X
xxxpsyduck 已提交
90

X
xxxpsyduck 已提交
91
## DOCUMENTATION
92 93 94 95 96
- [Quick installation](./doc/doc_en/installation_en.md)
- [Text detection model training/evaluation/prediction](./doc/doc_en/detection_en.md)
- [Text recognition model training/evaluation/prediction](./doc/doc_en/recognition_en.md)
- [Inference](./doc/doc_en/inference_en.md)
- [Dataset](./doc/doc_en/datasets_en.md)
X
xxxpsyduck 已提交
97

X
xxxpsyduck 已提交
98
## TEXT DETECTION ALGORITHM
X
xxxpsyduck 已提交
99

100
PaddleOCR open source text detection algorithms list:
X
xxxpsyduck 已提交
101 102
- [x]  EAST([paper](https://arxiv.org/abs/1704.03155))
- [x]  DB([paper](https://arxiv.org/abs/1911.08947))
103
- [ ]  SAST([paper](https://arxiv.org/abs/1908.05498))(Baidu Self-Research, comming soon)
X
xxxpsyduck 已提交
104

105
On the ICDAR2015 dataset, the text detection result is as follows:
X
xxxpsyduck 已提交
106

107
|Model|Backbone|precision|recall|Hmean|Download link|
X
xxxpsyduck 已提交
108
|-|-|-|-|-|-|
109 110 111 112
|EAST|ResNet50_vd|88.18%|85.51%|86.82%|[Download link](https://paddleocr.bj.bcebos.com/det_r50_vd_east.tar)|
|EAST|MobileNetV3|81.67%|79.83%|80.74%|[Download link](https://paddleocr.bj.bcebos.com/det_mv3_east.tar)|
|DB|ResNet50_vd|83.79%|80.65%|82.19%|[Download link](https://paddleocr.bj.bcebos.com/det_r50_vd_db.tar)|
|DB|MobileNetV3|75.92%|73.18%|74.53%|[Download link](https://paddleocr.bj.bcebos.com/det_mv3_db.tar)|
X
xxxpsyduck 已提交
113

M
MissPenguin 已提交
114
For use of [LSVT](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/doc/doc_en/datasets_en.md#1-icdar2019-lsvt) street view dataset with a total of 3w training data,the related configuration and pre-trained models for Chinese detection task are as follows:
115
|Model|Backbone|Configuration file|Pre-trained model|
X
xxxpsyduck 已提交
116
|-|-|-|-|
X
xxxpsyduck 已提交
117
|lightweight Chinese model|MobileNetV3|det_mv3_db.yml|[Download link](https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db.tar)|
118
|General Chinese OCR model|ResNet50_vd|det_r50_vd_db.yml|[Download link](https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db.tar)|
X
xxxpsyduck 已提交
119

120
* Note: For the training and evaluation of the above DB model, post-processing parameters box_thresh=0.6 and unclip_ratio=1.5 need to be set. If using different datasets and different models for training, these two parameters can be adjusted for better result.
X
xxxpsyduck 已提交
121

M
MissPenguin 已提交
122
For the training guide and use of PaddleOCR text detection algorithms, please refer to the document [Text detection model training/evaluation/prediction](./doc/doc_en/detection_en.md)
X
xxxpsyduck 已提交
123

X
xxxpsyduck 已提交
124
## TEXT RECOGNITION ALGORITHM
X
xxxpsyduck 已提交
125

126
PaddleOCR open-source text recognition algorithms list:
X
xxxpsyduck 已提交
127 128 129 130
- [x]  CRNN([paper](https://arxiv.org/abs/1507.05717))
- [x]  Rosetta([paper](https://arxiv.org/abs/1910.05085))
- [x]  STAR-Net([paper](http://www.bmva.org/bmvc/2016/papers/paper043/index.html))
- [x]  RARE([paper](https://arxiv.org/abs/1603.03915v1))
131
- [ ]  SRN([paper](https://arxiv.org/abs/2003.12294))(Baidu Self-Research, comming soon)
X
xxxpsyduck 已提交
132

133
Refer to [DTRB](https://arxiv.org/abs/1904.01906), the training and evaluation result of these above text recognition (using MJSynth and SynthText for training, evaluate on IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE) is as follow:
X
xxxpsyduck 已提交
134

135
|Model|Backbone|Avg Accuracy|Module combination|Download link|
X
xxxpsyduck 已提交
136
|-|-|-|-|-|
137 138 139 140 141 142 143 144 145
|Rosetta|Resnet34_vd|80.24%|rec_r34_vd_none_none_ctc|[Download link](https://paddleocr.bj.bcebos.com/rec_r34_vd_none_none_ctc.tar)|
|Rosetta|MobileNetV3|78.16%|rec_mv3_none_none_ctc|[Download link](https://paddleocr.bj.bcebos.com/rec_mv3_none_none_ctc.tar)|
|CRNN|Resnet34_vd|82.20%|rec_r34_vd_none_bilstm_ctc|[Download link](https://paddleocr.bj.bcebos.com/rec_r34_vd_none_bilstm_ctc.tar)|
|CRNN|MobileNetV3|79.37%|rec_mv3_none_bilstm_ctc|[Download link](https://paddleocr.bj.bcebos.com/rec_mv3_none_bilstm_ctc.tar)|
|STAR-Net|Resnet34_vd|83.93%|rec_r34_vd_tps_bilstm_ctc|[Download link](https://paddleocr.bj.bcebos.com/rec_r34_vd_tps_bilstm_ctc.tar)|
|STAR-Net|MobileNetV3|81.56%|rec_mv3_tps_bilstm_ctc|[Download link](https://paddleocr.bj.bcebos.com/rec_mv3_tps_bilstm_ctc.tar)|
|RARE|Resnet34_vd|84.90%|rec_r34_vd_tps_bilstm_attn|[Download link](https://paddleocr.bj.bcebos.com/rec_r34_vd_tps_bilstm_attn.tar)|
|RARE|MobileNetV3|83.32%|rec_mv3_tps_bilstm_attn|[Download link](https://paddleocr.bj.bcebos.com/rec_mv3_tps_bilstm_attn.tar)|

M
MissPenguin 已提交
146
We use [LSVT](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/doc/doc_en/datasets_en.md#1-icdar2019-lsvt) dataset and cropout 30w  traning data from original photos by using position groundtruth and make some calibration needed. In addition, based on the LSVT corpus, 500w synthetic data is generated to train the Chinese model. The related configuration and pre-trained models are as follows:
147
|Model|Backbone|Configuration file|Pre-trained model|
X
xxxpsyduck 已提交
148
|-|-|-|-|
T
tink2123 已提交
149 150
|lightweight Chinese model|MobileNetV3|rec_chinese_lite_train.yml|[Download link](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn.tar)|[inference model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_enhance_infer.tar) & [pre-trained model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_enhance.tar)|
|General Chinese OCR model|Resnet34_vd|rec_chinese_common_train.yml|[Download link](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn.tar)|[inference model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_enhance_infer.tar) & [pre-trained model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_enhance.tar)|
X
xxxpsyduck 已提交
151

M
MissPenguin 已提交
152
Please refer to the document for training guide and use of PaddleOCR text recognition algorithms [Text recognition model training/evaluation/prediction](./doc/doc_en/recognition_en.md)
X
xxxpsyduck 已提交
153

X
xxxpsyduck 已提交
154
## END-TO-END OCR ALGORITHM
155
- [ ]  [End2End-PSL](https://arxiv.org/abs/1909.07808)(Baidu Self-Research, comming soon)
X
xxxpsyduck 已提交
156

X
xxxpsyduck 已提交
157 158
<a name="lightweight Chinese OCR results"></a>
## LIGHTWEIGHT CHINESE OCR RESULTS
X
xxxpsyduck 已提交
159 160 161 162 163 164 165 166 167
![](doc/imgs_results/1.jpg)
![](doc/imgs_results/7.jpg)
![](doc/imgs_results/12.jpg)
![](doc/imgs_results/4.jpg)
![](doc/imgs_results/6.jpg)
![](doc/imgs_results/9.jpg)
![](doc/imgs_results/16.png)
![](doc/imgs_results/22.jpg)

168 169
<a name="General Chinese OCR results"></a>
## General Chinese OCR results
X
xxxpsyduck 已提交
170 171 172 173
![](doc/imgs_results/chinese_db_crnn_server/11.jpg)
![](doc/imgs_results/chinese_db_crnn_server/2.jpg)
![](doc/imgs_results/chinese_db_crnn_server/8.jpg)

T
tink2123 已提交
174 175 176 177 178 179 180 181 182 183 184
<a name="Chinese OCR results"></a>
## space Chinese OCR results

### LIGHTWEIGHT CHINESE OCR RESULTS

![](doc/imgs_results/img_11.jpg)

### General Chinese OCR results
![](doc/imgs_results/chinese_db_crnn_server/en_paper.jpg)


X
xxxpsyduck 已提交
185
## FAQ
T
tink2123 已提交
186
1. Error when using attention-based recognition model: KeyError: 'predict'
X
xxxpsyduck 已提交
187

188
    The inference of recognition model based on attention loss is still being debugged. For Chinese text recognition, it is recommended to choose the recognition model based on CTC loss first. In practice, it is also found that the recognition model based on attention loss is not as effective as the one based on CTC loss.
L
LDOUBLEV 已提交
189

T
tink2123 已提交
190
2. About inference speed
X
xxxpsyduck 已提交
191

192
    When there are a lot of texts in the picture, the prediction time will increase. You can use `--rec_batch_num` to set a smaller prediction batch size. The default value is 30, which can be changed to 10 or other values.
X
xxxpsyduck 已提交
193

T
tink2123 已提交
194
3. Service deployment and mobile deployment
X
xxxpsyduck 已提交
195

196
    It is expected that the service deployment based on Serving and the mobile deployment based on Paddle Lite will be released successively in mid-to-late June. Stay tuned for more updates.
L
LDOUBLEV 已提交
197

T
tink2123 已提交
198
4. Release time of self-developed algorithm
199 200

    Baidu Self-developed algorithms such as SAST, SRN and end2end PSL will be released in June or July. Please be patient.
L
LDOUBLEV 已提交
201

202
[more](./doc/doc_en/FAQ_en.md)
X
xxxpsyduck 已提交
203

X
xxxpsyduck 已提交
204
## WELCOME TO THE PaddleOCR TECHNICAL EXCHANGE GROUP
X
xxxpsyduck 已提交
205
WeChat: paddlehelp, note OCR, our assistant will get you into the group~
206

X
xxxpsyduck 已提交
207
<img src="./doc/paddlehelp.jpg"  width = "200" height = "200" />
X
xxxpsyduck 已提交
208

X
xxxpsyduck 已提交
209
## REFERENCES
X
xxxpsyduck 已提交
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
```
1. EAST:
@inproceedings{zhou2017east,
  title={EAST: an efficient and accurate scene text detector},
  author={Zhou, Xinyu and Yao, Cong and Wen, He and Wang, Yuzhi and Zhou, Shuchang and He, Weiran and Liang, Jiajun},
  booktitle={Proceedings of the IEEE conference on Computer Vision and Pattern Recognition},
  pages={5551--5560},
  year={2017}
}

2. DB:
@article{liao2019real,
  title={Real-time Scene Text Detection with Differentiable Binarization},
  author={Liao, Minghui and Wan, Zhaoyi and Yao, Cong and Chen, Kai and Bai, Xiang},
  journal={arXiv preprint arXiv:1911.08947},
  year={2019}
}

3. DTRB:
@inproceedings{baek2019wrong,
  title={What is wrong with scene text recognition model comparisons? dataset and model analysis},
  author={Baek, Jeonghun and Kim, Geewook and Lee, Junyeop and Park, Sungrae and Han, Dongyoon and Yun, Sangdoo and Oh, Seong Joon and Lee, Hwalsuk},
  booktitle={Proceedings of the IEEE International Conference on Computer Vision},
  pages={4715--4723},
  year={2019}
}

4. SAST:
@inproceedings{wang2019single,
  title={A Single-Shot Arbitrarily-Shaped Text Detector based on Context Attended Multi-Task Learning},
  author={Wang, Pengfei and Zhang, Chengquan and Qi, Fei and Huang, Zuming and En, Mengyi and Han, Junyu and Liu, Jingtuo and Ding, Errui and Shi, Guangming},
  booktitle={Proceedings of the 27th ACM International Conference on Multimedia},
  pages={1277--1285},
  year={2019}
}

5. SRN:
@article{yu2020towards,
  title={Towards Accurate Scene Text Recognition with Semantic Reasoning Networks},
  author={Yu, Deli and Li, Xuan and Zhang, Chengquan and Han, Junyu and Liu, Jingtuo and Ding, Errui},
  journal={arXiv preprint arXiv:2003.12294},
  year={2020}
}

6. end2end-psl:
@inproceedings{sun2019chinese,
  title={Chinese Street View Text: Large-scale Chinese Text Reading with Partially Supervised Learning},
  author={Sun, Yipeng and Liu, Jiaming and Liu, Wei and Han, Junyu and Ding, Errui and Liu, Jingtuo},
  booktitle={Proceedings of the IEEE International Conference on Computer Vision},
  pages={9086--9095},
  year={2019}
}
```

X
xxxpsyduck 已提交
264
## LICENSE
265
This project is released under <a href="https://github.com/PaddlePaddle/PaddleOCR/blob/master/LICENSE">Apache 2.0 license</a>
X
xxxpsyduck 已提交
266

X
xxxpsyduck 已提交
267
## CONTRIBUTION
268
We welcome all the contributions to PaddleOCR and appreciate for your feedback very much.
T
tink2123 已提交
269 270

- Many thanks to [Khanh Tran](https://github.com/xxxpsyduck) for contributing the English documentation.
L
LDOUBLEV 已提交
271
- Many thanks to [zhangxin](https://github.com/ZhangXinNan) for contributing the new visualize function、add .gitgnore and discard set PYTHONPATH manually.