README.md 4.1 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12

# 简介
PaddleOCR旨在打造一套丰富、领先、且实用的文字检测、识别模型/工具库,助力使用者训练出更好的模型,并应用落地。


## 文档教程
- [快速安装](./doc/installation.md)
- [文本识别模型训练/评估/预测](./doc/detection.md)
- [文本预测模型训练/评估/预测](./doc/recognition.md)

## 特性:
- 超轻量级模型
L
LDOUBLEV 已提交
13
    - (检测模型4.1M + 识别模型4.5M = 8.6M)
L
LDOUBLEV 已提交
14 15 16 17 18 19 20 21 22
- 支持竖排文字
    - (单模型同时支持横排和竖排文字识别)
- 支持长文本识别
- 支持中英文数字组合识别
- 提供训练代码
- 支持模型部署

## 文本检测算法:

L
LDOUBLEV 已提交
23
PaddleOCR开源的文本检测算法列表:
L
LDOUBLEV 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
- [EAST](https://arxiv.org/abs/1704.03155)
- [DB](https://arxiv.org/abs/1911.08947)
- [SAST](https://arxiv.org/abs/1908.05498)

算法效果:
|模型|骨干网络|数据集|Hmean|
|-|-|-|-|
|EAST|ResNet50_vd|ICDAR2015|85.85%|
|EAST|MobileNetV3|ICDAR2015|79.08%|
|DB|ResNet50_vd|ICDAR2015|83.30%|
|DB|MobileNetV3|ICDAR2015|73.00%|

PaddleOCR文本检测算法的训练与使用请参考[文档](./doc/detection.md)

## 文本识别算法:

L
LDOUBLEV 已提交
40
PaddleOCR开源的文本识别算法列表:
L
LDOUBLEV 已提交
41 42 43 44 45 46
- (CRNN)[https://arxiv.org/abs/1507.05717]
- [Rosetta](https://arxiv.org/abs/1910.05085)
- [STAR-Net](http://www.bmva.org/bmvc/2016/papers/paper043/index.html)
- [RARE](https://arxiv.org/abs/1603.03915v1)
- [SRN]((https://arxiv.org/abs/2003.12294))(百度自研)

L
LDOUBLEV 已提交
47
算法效果如下表所示,精度指标是在IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE数据集上的评测结果的平均值。
L
LDOUBLEV 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121

|模型|骨干网络|ACC|
|-|-|-|
|Rosetta|Resnet34_vd|80.24%|
|Rosetta|MobileNetV3|78.16%|
|CRNN|Resnet34_vd|82.20%|
|CRNN|MobileNetV3|79.37%|
|STAR-Net|Resnet34_vd|83.93%|
|STAR-Net|MobileNetV3|81.56%|
|RARE|Resnet34_vd|84.90%|
|RARE|MobileNetV3|83.32%|

PaddleOCR文本识别算法的训练与使用请参考[文档](./doc/recognition.md)

## 端到端算法
PaddleOCR即将开源百度自研端对端OCR模型[End2End-PSL](https://arxiv.org/abs/1909.07808),敬请关注。
- End2End-PSL (comming soon)



# 参考文献
```
EAST:
@inproceedings{zhou2017east,
  title={EAST: an efficient and accurate scene text detector},
  author={Zhou, Xinyu and Yao, Cong and Wen, He and Wang, Yuzhi and Zhou, Shuchang and He, Weiran and Liang, Jiajun},
  booktitle={Proceedings of the IEEE conference on Computer Vision and Pattern Recognition},
  pages={5551--5560},
  year={2017}
}

DB:
@article{liao2019real,
  title={Real-time Scene Text Detection with Differentiable Binarization},
  author={Liao, Minghui and Wan, Zhaoyi and Yao, Cong and Chen, Kai and Bai, Xiang},
  journal={arXiv preprint arXiv:1911.08947},
  year={2019}
}

DTRB:
@inproceedings{baek2019wrong,
  title={What is wrong with scene text recognition model comparisons? dataset and model analysis},
  author={Baek, Jeonghun and Kim, Geewook and Lee, Junyeop and Park, Sungrae and Han, Dongyoon and Yun, Sangdoo and Oh, Seong Joon and Lee, Hwalsuk},
  booktitle={Proceedings of the IEEE International Conference on Computer Vision},
  pages={4715--4723},
  year={2019}
}

SAST:
@inproceedings{wang2019single,
  title={A Single-Shot Arbitrarily-Shaped Text Detector based on Context Attended Multi-Task Learning},
  author={Wang, Pengfei and Zhang, Chengquan and Qi, Fei and Huang, Zuming and En, Mengyi and Han, Junyu and Liu, Jingtuo and Ding, Errui and Shi, Guangming},
  booktitle={Proceedings of the 27th ACM International Conference on Multimedia},
  pages={1277--1285},
  year={2019}
}

SRN:
@article{yu2020towards,
  title={Towards Accurate Scene Text Recognition with Semantic Reasoning Networks},
  author={Yu, Deli and Li, Xuan and Zhang, Chengquan and Han, Junyu and Liu, Jingtuo and Ding, Errui},
  journal={arXiv preprint arXiv:2003.12294},
  year={2020}
}

end2end-psl:
@inproceedings{sun2019chinese,
  title={Chinese Street View Text: Large-scale Chinese Text Reading with Partially Supervised Learning},
  author={Sun, Yipeng and Liu, Jiaming and Liu, Wei and Han, Junyu and Ding, Errui and Liu, Jingtuo},
  booktitle={Proceedings of the IEEE International Conference on Computer Vision},
  pages={9086--9095},
  year={2019}
}
```