det_east_head.py 3.6 KB
Newer Older
M
MissPenguin 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import math
import paddle
from paddle import nn
import paddle.nn.functional as F
from paddle import ParamAttr


class ConvBNLayer(nn.Layer):
    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 stride,
                 padding,
                 groups=1,
                 if_act=True,
                 act=None,
                 name=None):
        super(ConvBNLayer, self).__init__()
        self.if_act = if_act
        self.act = act
        self.conv = nn.Conv2D(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=kernel_size,
            stride=stride,
            padding=padding,
            groups=groups,
            weight_attr=ParamAttr(name=name + '_weights'),
            bias_attr=False)

        self.bn = nn.BatchNorm(
            num_channels=out_channels,
            act=act,
            param_attr=ParamAttr(name="bn_" + name + "_scale"),
            bias_attr=ParamAttr(name="bn_" + name + "_offset"),
            moving_mean_name="bn_" + name + "_mean",
            moving_variance_name="bn_" + name + "_variance")

    def forward(self, x):
        x = self.conv(x)
        x = self.bn(x)
        return x


class EASTHead(nn.Layer):
    """
    """
    def __init__(self, in_channels, model_name, **kwargs):
        super(EASTHead, self).__init__()
        self.model_name = model_name
        if self.model_name == "large":
            num_outputs = [128, 64, 1, 8]
        else:
            num_outputs = [64, 32, 1, 8]

        self.det_conv1 = ConvBNLayer(
            in_channels=in_channels,
            out_channels=num_outputs[0],
            kernel_size=3,
            stride=1,
            padding=1,
            if_act=True,
            act='relu',
            name="det_head1")
        self.det_conv2 = ConvBNLayer(
            in_channels=num_outputs[0],
            out_channels=num_outputs[1],
            kernel_size=3,
            stride=1,
            padding=1,
            if_act=True,
            act='relu',
            name="det_head2")
        self.score_conv = ConvBNLayer(
            in_channels=num_outputs[1],
            out_channels=num_outputs[2],
            kernel_size=1,
            stride=1,
            padding=0,
            if_act=False,
            act=None,
            name="f_score")
        self.geo_conv = ConvBNLayer(
            in_channels=num_outputs[1],
            out_channels=num_outputs[3],
            kernel_size=1,
            stride=1,
            padding=0,
            if_act=False,
            act=None,
            name="f_geo")

    def forward(self, x):
        f_det = self.det_conv1(x)
        f_det = self.det_conv2(f_det)
        f_score = self.score_conv(f_det)
        f_score = F.sigmoid(f_score)
        f_geo = self.geo_conv(f_det)
        f_geo = (F.sigmoid(f_geo) - 0.5) * 2 * 800

        pred = {'f_score': f_score, 'f_geo': f_geo}
        return pred