det_metric.py 5.7 KB
Newer Older
W
WenmuZhou 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

z37757's avatar
z37757 已提交
19
__all__ = ['DetMetric', 'DetFCEMetric']
W
WenmuZhou 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

from .eval_det_iou import DetectionIoUEvaluator


class DetMetric(object):
    def __init__(self, main_indicator='hmean', **kwargs):
        self.evaluator = DetectionIoUEvaluator()
        self.main_indicator = main_indicator
        self.reset()

    def __call__(self, preds, batch, **kwargs):
        '''
       batch: a list produced by dataloaders.
           image: np.ndarray  of shape (N, C, H, W).
           ratio_list: np.ndarray  of shape(N,2)
           polygons: np.ndarray  of shape (N, K, 4, 2), the polygons of objective regions.
           ignore_tags: np.ndarray  of shape (N, K), indicates whether a region is ignorable or not.
       preds: a list of dict produced by post process
            points: np.ndarray of shape (N, K, 4, 2), the polygons of objective regions.
       '''
        gt_polyons_batch = batch[2]
        ignore_tags_batch = batch[3]
        for pred, gt_polyons, ignore_tags in zip(preds, gt_polyons_batch,
                                                 ignore_tags_batch):
            # prepare gt
            gt_info_list = [{
                'points': gt_polyon,
                'text': '',
                'ignore': ignore_tag
            } for gt_polyon, ignore_tag in zip(gt_polyons, ignore_tags)]
            # prepare det
            det_info_list = [{
                'points': det_polyon,
                'text': ''
            } for det_polyon in pred['points']]
            result = self.evaluator.evaluate_image(gt_info_list, det_info_list)
            self.results.append(result)

    def get_metric(self):
        """
Z
zhoujun 已提交
60
        return metrics {
W
WenmuZhou 已提交
61 62 63 64 65 66 67 68 69 70 71 72
                 'precision': 0,
                 'recall': 0,
                 'hmean': 0
            }
        """

        metircs = self.evaluator.combine_results(self.results)
        self.reset()
        return metircs

    def reset(self):
        self.results = []  # clear results
z37757's avatar
z37757 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137


class DetFCEMetric(object):
    def __init__(self, main_indicator='hmean', **kwargs):
        self.evaluator = DetectionIoUEvaluator()
        self.main_indicator = main_indicator
        self.reset()

    def __call__(self, preds, batch, **kwargs):
        '''
       batch: a list produced by dataloaders.
           image: np.ndarray  of shape (N, C, H, W).
           ratio_list: np.ndarray  of shape(N,2)
           polygons: np.ndarray  of shape (N, K, 4, 2), the polygons of objective regions.
           ignore_tags: np.ndarray  of shape (N, K), indicates whether a region is ignorable or not.
       preds: a list of dict produced by post process
            points: np.ndarray of shape (N, K, 4, 2), the polygons of objective regions.
       '''
        gt_polyons_batch = batch[2]
        ignore_tags_batch = batch[3]

        for pred, gt_polyons, ignore_tags in zip(preds, gt_polyons_batch,
                                                 ignore_tags_batch):
            # prepare gt
            gt_info_list = [{
                'points': gt_polyon,
                'text': '',
                'ignore': ignore_tag
            } for gt_polyon, ignore_tag in zip(gt_polyons, ignore_tags)]
            # prepare det
            det_info_list = [{
                'points': det_polyon,
                'text': '',
                'score': score
            } for det_polyon, score in zip(pred['points'], pred['scores'])]

            for score_thr in self.results.keys():
                det_info_list_thr = [
                    det_info for det_info in det_info_list
                    if det_info['score'] >= score_thr
                ]
                result = self.evaluator.evaluate_image(gt_info_list,
                                                       det_info_list_thr)
                self.results[score_thr].append(result)

    def get_metric(self):
        """
        return metrics {'heman':0,
            'thr 0.3':'precision: 0 recall: 0 hmean: 0',
            'thr 0.4':'precision: 0 recall: 0 hmean: 0',
            'thr 0.5':'precision: 0 recall: 0 hmean: 0',
            'thr 0.6':'precision: 0 recall: 0 hmean: 0',
            'thr 0.7':'precision: 0 recall: 0 hmean: 0',
            'thr 0.8':'precision: 0 recall: 0 hmean: 0',
            'thr 0.9':'precision: 0 recall: 0 hmean: 0',
            }
        """
        metircs = {}
        hmean = 0
        for score_thr in self.results.keys():
            metirc = self.evaluator.combine_results(self.results[score_thr])
            # for key, value in metirc.items():
            #     metircs['{}_{}'.format(key, score_thr)] = value
            metirc_str = 'precision:{:.5f} recall:{:.5f} hmean:{:.5f}'.format(
                metirc['precision'], metirc['recall'], metirc['hmean'])
文幕地方's avatar
文幕地方 已提交
138
            metircs['thr {}'.format(score_thr)] = metirc_str
z37757's avatar
z37757 已提交
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
            hmean = max(hmean, metirc['hmean'])
        metircs['hmean'] = hmean

        self.reset()
        return metircs

    def reset(self):
        self.results = {
            0.3: [],
            0.4: [],
            0.5: [],
            0.6: [],
            0.7: [],
            0.8: [],
            0.9: []
        }  # clear results