kie_sdmgr_loss.py 4.7 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

L
fix  
LDOUBLEV 已提交
15
# reference from : https://github.com/open-mmlab/mmocr/blob/main/mmocr/models/kie/losses/sdmgr_loss.py
L
add kie  
LDOUBLEV 已提交
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from paddle import nn
import paddle


class SDMGRLoss(nn.Layer):
    def __init__(self, node_weight=1.0, edge_weight=1.0, ignore=0):
        super().__init__()
        self.loss_node = nn.CrossEntropyLoss(ignore_index=ignore)
        self.loss_edge = nn.CrossEntropyLoss(ignore_index=-1)
        self.node_weight = node_weight
        self.edge_weight = edge_weight
        self.ignore = ignore

    def pre_process(self, gts, tag):
        gts, tag = gts.numpy(), tag.numpy().tolist()
        temp_gts = []
        batch = len(tag)
        for i in range(batch):
            num, recoder_len = tag[i][0], tag[i][1]
            temp_gts.append(
                paddle.to_tensor(
                    gts[i, :num, :num + 1], dtype='int64'))
        return temp_gts

    def accuracy(self, pred, target, topk=1, thresh=None):
        """Calculate accuracy according to the prediction and target.

        Args:
            pred (torch.Tensor): The model prediction, shape (N, num_class)
            target (torch.Tensor): The target of each prediction, shape (N, )
            topk (int | tuple[int], optional): If the predictions in ``topk``
                matches the target, the predictions will be regarded as
                correct ones. Defaults to 1.
            thresh (float, optional): If not None, predictions with scores under
                this threshold are considered incorrect. Default to None.

        Returns:
            float | tuple[float]: If the input ``topk`` is a single integer,
                the function will return a single float as accuracy. If
                ``topk`` is a tuple containing multiple integers, the
                function will return a tuple containing accuracies of
                each ``topk`` number.
        """
        assert isinstance(topk, (int, tuple))
        if isinstance(topk, int):
            topk = (topk, )
            return_single = True
        else:
            return_single = False

        maxk = max(topk)
        if pred.shape[0] == 0:
            accu = [pred.new_tensor(0.) for i in range(len(topk))]
            return accu[0] if return_single else accu
        pred_value, pred_label = paddle.topk(pred, maxk, axis=1)
        pred_label = pred_label.transpose(
            [1, 0])  # transpose to shape (maxk, N)
        correct = paddle.equal(pred_label,
                               (target.reshape([1, -1]).expand_as(pred_label)))
        res = []
        for k in topk:
            correct_k = paddle.sum(correct[:k].reshape([-1]).astype('float32'),
                                   axis=0,
                                   keepdim=True)
            res.append(
                paddle.multiply(correct_k,
                                paddle.to_tensor(100.0 / pred.shape[0])))
        return res[0] if return_single else res

    def forward(self, pred, batch):
        node_preds, edge_preds = pred
        gts, tag = batch[4], batch[5]
        gts = self.pre_process(gts, tag)
        node_gts, edge_gts = [], []
        for gt in gts:
            node_gts.append(gt[:, 0])
            edge_gts.append(gt[:, 1:].reshape([-1]))
        node_gts = paddle.concat(node_gts)
        edge_gts = paddle.concat(edge_gts)

        node_valids = paddle.nonzero(node_gts != self.ignore).reshape([-1])
        edge_valids = paddle.nonzero(edge_gts != -1).reshape([-1])
        loss_node = self.loss_node(node_preds, node_gts)
        loss_edge = self.loss_edge(edge_preds, edge_gts)
        loss = self.node_weight * loss_node + self.edge_weight * loss_edge
        return dict(
            loss=loss,
            loss_node=loss_node,
            loss_edge=loss_edge,
            acc_node=self.accuracy(
                paddle.gather(node_preds, node_valids),
                paddle.gather(node_gts, node_valids)),
            acc_edge=self.accuracy(
                paddle.gather(edge_preds, edge_valids),
                paddle.gather(edge_gts, edge_valids)))