cast.h 85.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
/*
    pybind11/cast.h: Partial template specializations to cast between
    C++ and Python types

    Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>

    All rights reserved. Use of this source code is governed by a
    BSD-style license that can be found in the LICENSE file.
*/

#pragma once

#include "pytypes.h"
#include "typeid.h"
#include "descr.h"
#include <array>
#include <limits>
#include <tuple>

#if defined(PYBIND11_CPP17)
#  if defined(__has_include)
#    if __has_include(<string_view>)
#      define PYBIND11_HAS_STRING_VIEW
#    endif
#  elif defined(_MSC_VER)
#    define PYBIND11_HAS_STRING_VIEW
#  endif
#endif
#ifdef PYBIND11_HAS_STRING_VIEW
#include <string_view>
#endif

NAMESPACE_BEGIN(pybind11)
NAMESPACE_BEGIN(detail)
// Forward declarations:
inline PyTypeObject *make_static_property_type();
inline PyTypeObject *make_default_metaclass();
inline PyObject *make_object_base_type(PyTypeObject *metaclass);
struct value_and_holder;

/// Additional type information which does not fit into the PyTypeObject
struct type_info {
    PyTypeObject *type;
    const std::type_info *cpptype;
    size_t type_size, holder_size_in_ptrs;
    void *(*operator_new)(size_t);
    void (*init_instance)(instance *, const void *);
    void (*dealloc)(const value_and_holder &v_h);
    std::vector<PyObject *(*)(PyObject *, PyTypeObject *)> implicit_conversions;
    std::vector<std::pair<const std::type_info *, void *(*)(void *)>> implicit_casts;
    std::vector<bool (*)(PyObject *, void *&)> *direct_conversions;
    buffer_info *(*get_buffer)(PyObject *, void *) = nullptr;
    void *get_buffer_data = nullptr;
    /* A simple type never occurs as a (direct or indirect) parent
     * of a class that makes use of multiple inheritance */
    bool simple_type : 1;
    /* True if there is no multiple inheritance in this type's inheritance tree */
    bool simple_ancestors : 1;
    /* for base vs derived holder_type checks */
    bool default_holder : 1;
};

// Store the static internals pointer in a version-specific function so that we're guaranteed it
// will be distinct for modules compiled for different pybind11 versions.  Without this, some
// compilers (i.e. gcc) can use the same static pointer storage location across different .so's,
// even though the `get_internals()` function itself is local to each shared object.
template <int = PYBIND11_VERSION_MAJOR, int = PYBIND11_VERSION_MINOR>
internals *&get_internals_ptr() { static internals *internals_ptr = nullptr; return internals_ptr; }

PYBIND11_NOINLINE inline internals &get_internals() {
    internals *&internals_ptr = get_internals_ptr();
    if (internals_ptr)
        return *internals_ptr;
    handle builtins(PyEval_GetBuiltins());
    const char *id = PYBIND11_INTERNALS_ID;
    if (builtins.contains(id) && isinstance<capsule>(builtins[id])) {
        internals_ptr = *static_cast<internals **>(capsule(builtins[id]));
    } else {
        internals_ptr = new internals();
        #if defined(WITH_THREAD)
            PyEval_InitThreads();
            PyThreadState *tstate = PyThreadState_Get();
            internals_ptr->tstate = PyThread_create_key();
            PyThread_set_key_value(internals_ptr->tstate, tstate);
            internals_ptr->istate = tstate->interp;
        #endif
        builtins[id] = capsule(&internals_ptr);
        internals_ptr->registered_exception_translators.push_front(
            [](std::exception_ptr p) -> void {
                try {
                    if (p) std::rethrow_exception(p);
                } catch (error_already_set &e)           { e.restore();                                    return;
                } catch (const builtin_exception &e)     { e.set_error();                                  return;
                } catch (const std::bad_alloc &e)        { PyErr_SetString(PyExc_MemoryError,   e.what()); return;
                } catch (const std::domain_error &e)     { PyErr_SetString(PyExc_ValueError,    e.what()); return;
                } catch (const std::invalid_argument &e) { PyErr_SetString(PyExc_ValueError,    e.what()); return;
                } catch (const std::length_error &e)     { PyErr_SetString(PyExc_ValueError,    e.what()); return;
                } catch (const std::out_of_range &e)     { PyErr_SetString(PyExc_IndexError,    e.what()); return;
                } catch (const std::range_error &e)      { PyErr_SetString(PyExc_ValueError,    e.what()); return;
                } catch (const std::exception &e)        { PyErr_SetString(PyExc_RuntimeError,  e.what()); return;
                } catch (...) {
                    PyErr_SetString(PyExc_RuntimeError, "Caught an unknown exception!");
                    return;
                }
            }
        );
        internals_ptr->static_property_type = make_static_property_type();
        internals_ptr->default_metaclass = make_default_metaclass();
        internals_ptr->instance_base = make_object_base_type(internals_ptr->default_metaclass);
    }
    return *internals_ptr;
}

/// A life support system for temporary objects created by `type_caster::load()`.
/// Adding a patient will keep it alive up until the enclosing function returns.
class loader_life_support {
public:
    /// A new patient frame is created when a function is entered
    loader_life_support() {
        get_internals().loader_patient_stack.push_back(nullptr);
    }

    /// ... and destroyed after it returns
    ~loader_life_support() {
        auto &stack = get_internals().loader_patient_stack;
        if (stack.empty())
            pybind11_fail("loader_life_support: internal error");

        auto ptr = stack.back();
        stack.pop_back();
        Py_CLEAR(ptr);

        // A heuristic to reduce the stack's capacity (e.g. after long recursive calls)
        if (stack.capacity() > 16 && stack.size() != 0 && stack.capacity() / stack.size() > 2)
            stack.shrink_to_fit();
    }

    /// This can only be used inside a pybind11-bound function, either by `argument_loader`
    /// at argument preparation time or by `py::cast()` at execution time.
    PYBIND11_NOINLINE static void add_patient(handle h) {
        auto &stack = get_internals().loader_patient_stack;
        if (stack.empty())
            throw cast_error("When called outside a bound function, py::cast() cannot "
                             "do Python -> C++ conversions which require the creation "
                             "of temporary values");

        auto &list_ptr = stack.back();
        if (list_ptr == nullptr) {
            list_ptr = PyList_New(1);
            if (!list_ptr)
                pybind11_fail("loader_life_support: error allocating list");
            PyList_SET_ITEM(list_ptr, 0, h.inc_ref().ptr());
        } else {
            auto result = PyList_Append(list_ptr, h.ptr());
            if (result == -1)
                pybind11_fail("loader_life_support: error adding patient");
        }
    }
};

// Gets the cache entry for the given type, creating it if necessary.  The return value is the pair
// returned by emplace, i.e. an iterator for the entry and a bool set to `true` if the entry was
// just created.
inline std::pair<decltype(internals::registered_types_py)::iterator, bool> all_type_info_get_cache(PyTypeObject *type);

// Populates a just-created cache entry.
PYBIND11_NOINLINE inline void all_type_info_populate(PyTypeObject *t, std::vector<type_info *> &bases) {
    std::vector<PyTypeObject *> check;
    for (handle parent : reinterpret_borrow<tuple>(t->tp_bases))
        check.push_back((PyTypeObject *) parent.ptr());

    auto const &type_dict = get_internals().registered_types_py;
    for (size_t i = 0; i < check.size(); i++) {
        auto type = check[i];
        // Ignore Python2 old-style class super type:
        if (!PyType_Check((PyObject *) type)) continue;

        // Check `type` in the current set of registered python types:
        auto it = type_dict.find(type);
        if (it != type_dict.end()) {
            // We found a cache entry for it, so it's either pybind-registered or has pre-computed
            // pybind bases, but we have to make sure we haven't already seen the type(s) before: we
            // want to follow Python/virtual C++ rules that there should only be one instance of a
            // common base.
            for (auto *tinfo : it->second) {
                // NB: Could use a second set here, rather than doing a linear search, but since
                // having a large number of immediate pybind11-registered types seems fairly
                // unlikely, that probably isn't worthwhile.
                bool found = false;
                for (auto *known : bases) {
                    if (known == tinfo) { found = true; break; }
                }
                if (!found) bases.push_back(tinfo);
            }
        }
        else if (type->tp_bases) {
            // It's some python type, so keep follow its bases classes to look for one or more
            // registered types
            if (i + 1 == check.size()) {
                // When we're at the end, we can pop off the current element to avoid growing
                // `check` when adding just one base (which is typical--.e. when there is no
                // multiple inheritance)
                check.pop_back();
                i--;
            }
            for (handle parent : reinterpret_borrow<tuple>(type->tp_bases))
                check.push_back((PyTypeObject *) parent.ptr());
        }
    }
}

/**
 * Extracts vector of type_info pointers of pybind-registered roots of the given Python type.  Will
 * be just 1 pybind type for the Python type of a pybind-registered class, or for any Python-side
 * derived class that uses single inheritance.  Will contain as many types as required for a Python
 * class that uses multiple inheritance to inherit (directly or indirectly) from multiple
 * pybind-registered classes.  Will be empty if neither the type nor any base classes are
 * pybind-registered.
 *
 * The value is cached for the lifetime of the Python type.
 */
inline const std::vector<detail::type_info *> &all_type_info(PyTypeObject *type) {
    auto ins = all_type_info_get_cache(type);
    if (ins.second)
        // New cache entry: populate it
        all_type_info_populate(type, ins.first->second);

    return ins.first->second;
}

/**
 * Gets a single pybind11 type info for a python type.  Returns nullptr if neither the type nor any
 * ancestors are pybind11-registered.  Throws an exception if there are multiple bases--use
 * `all_type_info` instead if you want to support multiple bases.
 */
PYBIND11_NOINLINE inline detail::type_info* get_type_info(PyTypeObject *type) {
    auto &bases = all_type_info(type);
    if (bases.size() == 0)
        return nullptr;
    if (bases.size() > 1)
        pybind11_fail("pybind11::detail::get_type_info: type has multiple pybind11-registered bases");
    return bases.front();
}

PYBIND11_NOINLINE inline detail::type_info *get_type_info(const std::type_info &tp,
                                                          bool throw_if_missing = false) {
    auto &types = get_internals().registered_types_cpp;

    auto it = types.find(std::type_index(tp));
    if (it != types.end())
        return (detail::type_info *) it->second;
    if (throw_if_missing) {
        std::string tname = tp.name();
        detail::clean_type_id(tname);
        pybind11_fail("pybind11::detail::get_type_info: unable to find type info for \"" + tname + "\"");
    }
    return nullptr;
}

PYBIND11_NOINLINE inline handle get_type_handle(const std::type_info &tp, bool throw_if_missing) {
    detail::type_info *type_info = get_type_info(tp, throw_if_missing);
    return handle(type_info ? ((PyObject *) type_info->type) : nullptr);
}

struct value_and_holder {
    instance *inst;
    size_t index;
    const detail::type_info *type;
    void **vh;

    value_and_holder(instance *i, const detail::type_info *type, size_t vpos, size_t index) :
        inst{i}, index{index}, type{type},
        vh{inst->simple_layout ? inst->simple_value_holder : &inst->nonsimple.values_and_holders[vpos]}
    {}

    // Used for past-the-end iterator
    value_and_holder(size_t index) : index{index} {}

    template <typename V = void> V *&value_ptr() const {
        return reinterpret_cast<V *&>(vh[0]);
    }
    // True if this `value_and_holder` has a non-null value pointer
    explicit operator bool() const { return value_ptr(); }

    template <typename H> H &holder() const {
        return reinterpret_cast<H &>(vh[1]);
    }
    bool holder_constructed() const {
        return inst->simple_layout
            ? inst->simple_holder_constructed
            : inst->nonsimple.status[index] & instance::status_holder_constructed;
    }
    void set_holder_constructed() {
        if (inst->simple_layout)
            inst->simple_holder_constructed = true;
        else
            inst->nonsimple.status[index] |= instance::status_holder_constructed;
    }
    bool instance_registered() const {
        return inst->simple_layout
            ? inst->simple_instance_registered
            : inst->nonsimple.status[index] & instance::status_instance_registered;
    }
    void set_instance_registered() {
        if (inst->simple_layout)
            inst->simple_instance_registered = true;
        else
            inst->nonsimple.status[index] |= instance::status_instance_registered;
    }
};

// Container for accessing and iterating over an instance's values/holders
struct values_and_holders {
private:
    instance *inst;
    using type_vec = std::vector<detail::type_info *>;
    const type_vec &tinfo;

public:
    values_and_holders(instance *inst) : inst{inst}, tinfo(all_type_info(Py_TYPE(inst))) {}

    struct iterator {
    private:
        instance *inst;
        const type_vec *types;
        value_and_holder curr;
        friend struct values_and_holders;
        iterator(instance *inst, const type_vec *tinfo)
            : inst{inst}, types{tinfo},
            curr(inst /* instance */,
                 types->empty() ? nullptr : (*types)[0] /* type info */,
                 0, /* vpos: (non-simple types only): the first vptr comes first */
                 0 /* index */)
        {}
        // Past-the-end iterator:
        iterator(size_t end) : curr(end) {}
    public:
        bool operator==(const iterator &other) { return curr.index == other.curr.index; }
        bool operator!=(const iterator &other) { return curr.index != other.curr.index; }
        iterator &operator++() {
            if (!inst->simple_layout)
                curr.vh += 1 + (*types)[curr.index]->holder_size_in_ptrs;
            ++curr.index;
            curr.type = curr.index < types->size() ? (*types)[curr.index] : nullptr;
            return *this;
        }
        value_and_holder &operator*() { return curr; }
        value_and_holder *operator->() { return &curr; }
    };

    iterator begin() { return iterator(inst, &tinfo); }
    iterator end() { return iterator(tinfo.size()); }

    iterator find(const type_info *find_type) {
        auto it = begin(), endit = end();
        while (it != endit && it->type != find_type) ++it;
        return it;
    }

    size_t size() { return tinfo.size(); }
};

/**
 * Extracts C++ value and holder pointer references from an instance (which may contain multiple
 * values/holders for python-side multiple inheritance) that match the given type.  Throws an error
 * if the given type (or ValueType, if omitted) is not a pybind11 base of the given instance.  If
 * `find_type` is omitted (or explicitly specified as nullptr) the first value/holder are returned,
 * regardless of type (and the resulting .type will be nullptr).
 *
 * The returned object should be short-lived: in particular, it must not outlive the called-upon
 * instance.
 */
PYBIND11_NOINLINE inline value_and_holder instance::get_value_and_holder(const type_info *find_type /*= nullptr default in common.h*/) {
    // Optimize common case:
    if (!find_type || Py_TYPE(this) == find_type->type)
        return value_and_holder(this, find_type, 0, 0);

    detail::values_and_holders vhs(this);
    auto it = vhs.find(find_type);
    if (it != vhs.end())
        return *it;

#if defined(NDEBUG)
    pybind11_fail("pybind11::detail::instance::get_value_and_holder: "
            "type is not a pybind11 base of the given instance "
            "(compile in debug mode for type details)");
#else
    pybind11_fail("pybind11::detail::instance::get_value_and_holder: `" +
            std::string(find_type->type->tp_name) + "' is not a pybind11 base of the given `" +
            std::string(Py_TYPE(this)->tp_name) + "' instance");
#endif
}

PYBIND11_NOINLINE inline void instance::allocate_layout() {
    auto &tinfo = all_type_info(Py_TYPE(this));

    const size_t n_types = tinfo.size();

    if (n_types == 0)
        pybind11_fail("instance allocation failed: new instance has no pybind11-registered base types");

    simple_layout =
        n_types == 1 && tinfo.front()->holder_size_in_ptrs <= instance_simple_holder_in_ptrs();

    // Simple path: no python-side multiple inheritance, and a small-enough holder
    if (simple_layout) {
        simple_value_holder[0] = nullptr;
        simple_holder_constructed = false;
        simple_instance_registered = false;
    }
    else { // multiple base types or a too-large holder
        // Allocate space to hold: [v1*][h1][v2*][h2]...[bb...] where [vN*] is a value pointer,
        // [hN] is the (uninitialized) holder instance for value N, and [bb...] is a set of bool
        // values that tracks whether each associated holder has been initialized.  Each [block] is
        // padded, if necessary, to an integer multiple of sizeof(void *).
        size_t space = 0;
        for (auto t : tinfo) {
            space += 1; // value pointer
            space += t->holder_size_in_ptrs; // holder instance
        }
        size_t flags_at = space;
        space += size_in_ptrs(n_types); // status bytes (holder_constructed and instance_registered)

        // Allocate space for flags, values, and holders, and initialize it to 0 (flags and values,
        // in particular, need to be 0).  Use Python's memory allocation functions: in Python 3.6
        // they default to using pymalloc, which is designed to be efficient for small allocations
        // like the one we're doing here; in earlier versions (and for larger allocations) they are
        // just wrappers around malloc.
#if PY_VERSION_HEX >= 0x03050000
        nonsimple.values_and_holders = (void **) PyMem_Calloc(space, sizeof(void *));
        if (!nonsimple.values_and_holders) throw std::bad_alloc();
#else
        nonsimple.values_and_holders = (void **) PyMem_New(void *, space);
        if (!nonsimple.values_and_holders) throw std::bad_alloc();
        std::memset(nonsimple.values_and_holders, 0, space * sizeof(void *));
#endif
        nonsimple.status = reinterpret_cast<uint8_t *>(&nonsimple.values_and_holders[flags_at]);
    }
    owned = true;
}

PYBIND11_NOINLINE inline void instance::deallocate_layout() {
    if (!simple_layout)
        PyMem_Free(nonsimple.values_and_holders);
}

PYBIND11_NOINLINE inline bool isinstance_generic(handle obj, const std::type_info &tp) {
    handle type = detail::get_type_handle(tp, false);
    if (!type)
        return false;
    return isinstance(obj, type);
}

PYBIND11_NOINLINE inline std::string error_string() {
    if (!PyErr_Occurred()) {
        PyErr_SetString(PyExc_RuntimeError, "Unknown internal error occurred");
        return "Unknown internal error occurred";
    }

    error_scope scope; // Preserve error state

    std::string errorString;
    if (scope.type) {
        errorString += handle(scope.type).attr("__name__").cast<std::string>();
        errorString += ": ";
    }
    if (scope.value)
        errorString += (std::string) str(scope.value);

    PyErr_NormalizeException(&scope.type, &scope.value, &scope.trace);

#if PY_MAJOR_VERSION >= 3
    if (scope.trace != nullptr)
        PyException_SetTraceback(scope.value, scope.trace);
#endif

#if !defined(PYPY_VERSION)
    if (scope.trace) {
        PyTracebackObject *trace = (PyTracebackObject *) scope.trace;

        /* Get the deepest trace possible */
        while (trace->tb_next)
            trace = trace->tb_next;

        PyFrameObject *frame = trace->tb_frame;
        errorString += "\n\nAt:\n";
        while (frame) {
            int lineno = PyFrame_GetLineNumber(frame);
            errorString +=
                "  " + handle(frame->f_code->co_filename).cast<std::string>() +
                "(" + std::to_string(lineno) + "): " +
                handle(frame->f_code->co_name).cast<std::string>() + "\n";
            frame = frame->f_back;
        }
        trace = trace->tb_next;
    }
#endif

    return errorString;
}

PYBIND11_NOINLINE inline handle get_object_handle(const void *ptr, const detail::type_info *type ) {
    auto &instances = get_internals().registered_instances;
    auto range = instances.equal_range(ptr);
    for (auto it = range.first; it != range.second; ++it) {
        for (auto vh : values_and_holders(it->second)) {
            if (vh.type == type)
                return handle((PyObject *) it->second);
        }
    }
    return handle();
}

inline PyThreadState *get_thread_state_unchecked() {
#if defined(PYPY_VERSION)
    return PyThreadState_GET();
#elif PY_VERSION_HEX < 0x03000000
    return _PyThreadState_Current;
#elif PY_VERSION_HEX < 0x03050000
    return (PyThreadState*) _Py_atomic_load_relaxed(&_PyThreadState_Current);
#elif PY_VERSION_HEX < 0x03050200
    return (PyThreadState*) _PyThreadState_Current.value;
#else
    return _PyThreadState_UncheckedGet();
#endif
}

// Forward declarations
inline void keep_alive_impl(handle nurse, handle patient);
inline PyObject *make_new_instance(PyTypeObject *type, bool allocate_value = true);

class type_caster_generic {
public:
    PYBIND11_NOINLINE type_caster_generic(const std::type_info &type_info)
     : typeinfo(get_type_info(type_info)) { }

    bool load(handle src, bool convert) {
        return load_impl<type_caster_generic>(src, convert);
    }

    PYBIND11_NOINLINE static handle cast(const void *_src, return_value_policy policy, handle parent,
                                         const detail::type_info *tinfo,
                                         void *(*copy_constructor)(const void *),
                                         void *(*move_constructor)(const void *),
                                         const void *existing_holder = nullptr) {
        if (!tinfo) // no type info: error will be set already
            return handle();

        void *src = const_cast<void *>(_src);
        if (src == nullptr)
            return none().release();

        auto it_instances = get_internals().registered_instances.equal_range(src);
        for (auto it_i = it_instances.first; it_i != it_instances.second; ++it_i) {
            for (auto instance_type : detail::all_type_info(Py_TYPE(it_i->second))) {
                if (instance_type && instance_type == tinfo)
                    return handle((PyObject *) it_i->second).inc_ref();
            }
        }

        auto inst = reinterpret_steal<object>(make_new_instance(tinfo->type, false /* don't allocate value */));
        auto wrapper = reinterpret_cast<instance *>(inst.ptr());
        wrapper->owned = false;
        void *&valueptr = values_and_holders(wrapper).begin()->value_ptr();

        switch (policy) {
            case return_value_policy::automatic:
            case return_value_policy::take_ownership:
                valueptr = src;
                wrapper->owned = true;
                break;

            case return_value_policy::automatic_reference:
            case return_value_policy::reference:
                valueptr = src;
                wrapper->owned = false;
                break;

            case return_value_policy::copy:
                if (copy_constructor)
                    valueptr = copy_constructor(src);
                else
                    throw cast_error("return_value_policy = copy, but the "
                                     "object is non-copyable!");
                wrapper->owned = true;
                break;

            case return_value_policy::move:
                if (move_constructor)
                    valueptr = move_constructor(src);
                else if (copy_constructor)
                    valueptr = copy_constructor(src);
                else
                    throw cast_error("return_value_policy = move, but the "
                                     "object is neither movable nor copyable!");
                wrapper->owned = true;
                break;

            case return_value_policy::reference_internal:
                valueptr = src;
                wrapper->owned = false;
                keep_alive_impl(inst, parent);
                break;

            default:
                throw cast_error("unhandled return_value_policy: should not happen!");
        }

        tinfo->init_instance(wrapper, existing_holder);

        return inst.release();
    }

protected:

    // Base methods for generic caster; there are overridden in copyable_holder_caster
    void load_value(const value_and_holder &v_h) {
        value = v_h.value_ptr();
    }
    bool try_implicit_casts(handle src, bool convert) {
        for (auto &cast : typeinfo->implicit_casts) {
            type_caster_generic sub_caster(*cast.first);
            if (sub_caster.load(src, convert)) {
                value = cast.second(sub_caster.value);
                return true;
            }
        }
        return false;
    }
    bool try_direct_conversions(handle src) {
        for (auto &converter : *typeinfo->direct_conversions) {
            if (converter(src.ptr(), value))
                return true;
        }
        return false;
    }
    void check_holder_compat() {}

    // Implementation of `load`; this takes the type of `this` so that it can dispatch the relevant
    // bits of code between here and copyable_holder_caster where the two classes need different
    // logic (without having to resort to virtual inheritance).
    template <typename ThisT>
    PYBIND11_NOINLINE bool load_impl(handle src, bool convert) {
        if (!src || !typeinfo)
            return false;
        if (src.is_none()) {
            // Defer accepting None to other overloads (if we aren't in convert mode):
            if (!convert) return false;
            value = nullptr;
            return true;
        }

        auto &this_ = static_cast<ThisT &>(*this);
        this_.check_holder_compat();

        PyTypeObject *srctype = Py_TYPE(src.ptr());

        // Case 1: If src is an exact type match for the target type then we can reinterpret_cast
        // the instance's value pointer to the target type:
        if (srctype == typeinfo->type) {
            this_.load_value(reinterpret_cast<instance *>(src.ptr())->get_value_and_holder());
            return true;
        }
        // Case 2: We have a derived class
        else if (PyType_IsSubtype(srctype, typeinfo->type)) {
            auto &bases = all_type_info(srctype);
            bool no_cpp_mi = typeinfo->simple_type;

            // Case 2a: the python type is a Python-inherited derived class that inherits from just
            // one simple (no MI) pybind11 class, or is an exact match, so the C++ instance is of
            // the right type and we can use reinterpret_cast.
            // (This is essentially the same as case 2b, but because not using multiple inheritance
            // is extremely common, we handle it specially to avoid the loop iterator and type
            // pointer lookup overhead)
            if (bases.size() == 1 && (no_cpp_mi || bases.front()->type == typeinfo->type)) {
                this_.load_value(reinterpret_cast<instance *>(src.ptr())->get_value_and_holder());
                return true;
            }
            // Case 2b: the python type inherits from multiple C++ bases.  Check the bases to see if
            // we can find an exact match (or, for a simple C++ type, an inherited match); if so, we
            // can safely reinterpret_cast to the relevant pointer.
            else if (bases.size() > 1) {
                for (auto base : bases) {
                    if (no_cpp_mi ? PyType_IsSubtype(base->type, typeinfo->type) : base->type == typeinfo->type) {
                        this_.load_value(reinterpret_cast<instance *>(src.ptr())->get_value_and_holder(base));
                        return true;
                    }
                }
            }

            // Case 2c: C++ multiple inheritance is involved and we couldn't find an exact type match
            // in the registered bases, above, so try implicit casting (needed for proper C++ casting
            // when MI is involved).
            if (this_.try_implicit_casts(src, convert))
                return true;
        }

        // Perform an implicit conversion
        if (convert) {
            for (auto &converter : typeinfo->implicit_conversions) {
                auto temp = reinterpret_steal<object>(converter(src.ptr(), typeinfo->type));
                if (load_impl<ThisT>(temp, false)) {
                    loader_life_support::add_patient(temp);
                    return true;
                }
            }
            if (this_.try_direct_conversions(src))
                return true;
        }
        return false;
    }


    // Called to do type lookup and wrap the pointer and type in a pair when a dynamic_cast
    // isn't needed or can't be used.  If the type is unknown, sets the error and returns a pair
    // with .second = nullptr.  (p.first = nullptr is not an error: it becomes None).
    PYBIND11_NOINLINE static std::pair<const void *, const type_info *> src_and_type(
            const void *src, const std::type_info &cast_type, const std::type_info *rtti_type = nullptr) {
        auto &internals = get_internals();
        auto it = internals.registered_types_cpp.find(std::type_index(cast_type));
        if (it != internals.registered_types_cpp.end())
            return {src, (const type_info *) it->second};

        // Not found, set error:
        std::string tname = rtti_type ? rtti_type->name() : cast_type.name();
        detail::clean_type_id(tname);
        std::string msg = "Unregistered type : " + tname;
        PyErr_SetString(PyExc_TypeError, msg.c_str());
        return {nullptr, nullptr};
    }

    const type_info *typeinfo = nullptr;
    void *value = nullptr;
};

/**
 * Determine suitable casting operator for pointer-or-lvalue-casting type casters.  The type caster
 * needs to provide `operator T*()` and `operator T&()` operators.
 *
 * If the type supports moving the value away via an `operator T&&() &&` method, it should use
 * `movable_cast_op_type` instead.
 */
template <typename T>
using cast_op_type =
    conditional_t<std::is_pointer<remove_reference_t<T>>::value,
        typename std::add_pointer<intrinsic_t<T>>::type,
        typename std::add_lvalue_reference<intrinsic_t<T>>::type>;

/**
 * Determine suitable casting operator for a type caster with a movable value.  Such a type caster
 * needs to provide `operator T*()`, `operator T&()`, and `operator T&&() &&`.  The latter will be
 * called in appropriate contexts where the value can be moved rather than copied.
 *
 * These operator are automatically provided when using the PYBIND11_TYPE_CASTER macro.
 */
template <typename T>
using movable_cast_op_type =
    conditional_t<std::is_pointer<typename std::remove_reference<T>::type>::value,
        typename std::add_pointer<intrinsic_t<T>>::type,
    conditional_t<std::is_rvalue_reference<T>::value,
        typename std::add_rvalue_reference<intrinsic_t<T>>::type,
        typename std::add_lvalue_reference<intrinsic_t<T>>::type>>;

// std::is_copy_constructible isn't quite enough: it lets std::vector<T> (and similar) through when
// T is non-copyable, but code containing such a copy constructor fails to actually compile.
template <typename T, typename SFINAE = void> struct is_copy_constructible : std::is_copy_constructible<T> {};

// Specialization for types that appear to be copy constructible but also look like stl containers
// (we specifically check for: has `value_type` and `reference` with `reference = value_type&`): if
// so, copy constructability depends on whether the value_type is copy constructible.
template <typename Container> struct is_copy_constructible<Container, enable_if_t<all_of<
        std::is_copy_constructible<Container>,
        std::is_same<typename Container::value_type &, typename Container::reference>
    >::value>> : is_copy_constructible<typename Container::value_type> {};

#if !defined(PYBIND11_CPP17)
// Likewise for std::pair before C++17 (which mandates that the copy constructor not exist when the
// two types aren't themselves copy constructible).
template <typename T1, typename T2> struct is_copy_constructible<std::pair<T1, T2>>
    : all_of<is_copy_constructible<T1>, is_copy_constructible<T2>> {};
#endif

/// Generic type caster for objects stored on the heap
template <typename type> class type_caster_base : public type_caster_generic {
    using itype = intrinsic_t<type>;
public:
    static PYBIND11_DESCR name() { return type_descr(_<type>()); }

    type_caster_base() : type_caster_base(typeid(type)) { }
    explicit type_caster_base(const std::type_info &info) : type_caster_generic(info) { }

    static handle cast(const itype &src, return_value_policy policy, handle parent) {
        if (policy == return_value_policy::automatic || policy == return_value_policy::automatic_reference)
            policy = return_value_policy::copy;
        return cast(&src, policy, parent);
    }

    static handle cast(itype &&src, return_value_policy, handle parent) {
        return cast(&src, return_value_policy::move, parent);
    }

    // Returns a (pointer, type_info) pair taking care of necessary RTTI type lookup for a
    // polymorphic type.  If the instance isn't derived, returns the non-RTTI base version.
    template <typename T = itype, enable_if_t<std::is_polymorphic<T>::value, int> = 0>
    static std::pair<const void *, const type_info *> src_and_type(const itype *src) {
        const void *vsrc = src;
        auto &internals = get_internals();
        auto &cast_type = typeid(itype);
        const std::type_info *instance_type = nullptr;
        if (vsrc) {
            instance_type = &typeid(*src);
            if (!same_type(cast_type, *instance_type)) {
                // This is a base pointer to a derived type; if it is a pybind11-registered type, we
                // can get the correct derived pointer (which may be != base pointer) by a
                // dynamic_cast to most derived type:
                auto it = internals.registered_types_cpp.find(std::type_index(*instance_type));
                if (it != internals.registered_types_cpp.end())
                    return {dynamic_cast<const void *>(src), (const type_info *) it->second};
            }
        }
        // Otherwise we have either a nullptr, an `itype` pointer, or an unknown derived pointer, so
        // don't do a cast
        return type_caster_generic::src_and_type(vsrc, cast_type, instance_type);
    }

    // Non-polymorphic type, so no dynamic casting; just call the generic version directly
    template <typename T = itype, enable_if_t<!std::is_polymorphic<T>::value, int> = 0>
    static std::pair<const void *, const type_info *> src_and_type(const itype *src) {
        return type_caster_generic::src_and_type(src, typeid(itype));
    }

    static handle cast(const itype *src, return_value_policy policy, handle parent) {
        auto st = src_and_type(src);
        return type_caster_generic::cast(
            st.first, policy, parent, st.second,
            make_copy_constructor(src), make_move_constructor(src));
    }

    static handle cast_holder(const itype *src, const void *holder) {
        auto st = src_and_type(src);
        return type_caster_generic::cast(
            st.first, return_value_policy::take_ownership, {}, st.second,
            nullptr, nullptr, holder);
    }

    template <typename T> using cast_op_type = cast_op_type<T>;

    operator itype*() { return (type *) value; }
    operator itype&() { if (!value) throw reference_cast_error(); return *((itype *) value); }

protected:
    using Constructor = void *(*)(const void *);

    /* Only enabled when the types are {copy,move}-constructible *and* when the type
       does not have a private operator new implementation. */
    template <typename T, typename = enable_if_t<is_copy_constructible<T>::value>>
    static auto make_copy_constructor(const T *x) -> decltype(new T(*x), Constructor{}) {
        return [](const void *arg) -> void * {
            return new T(*reinterpret_cast<const T *>(arg));
        };
    }

    template <typename T, typename = enable_if_t<std::is_move_constructible<T>::value>>
    static auto make_move_constructor(const T *x) -> decltype(new T(std::move(*const_cast<T *>(x))), Constructor{}) {
        return [](const void *arg) -> void * {
            return new T(std::move(*const_cast<T *>(reinterpret_cast<const T *>(arg))));
        };
    }

    static Constructor make_copy_constructor(...) { return nullptr; }
    static Constructor make_move_constructor(...) { return nullptr; }
};

template <typename type, typename SFINAE = void> class type_caster : public type_caster_base<type> { };
template <typename type> using make_caster = type_caster<intrinsic_t<type>>;

// Shortcut for calling a caster's `cast_op_type` cast operator for casting a type_caster to a T
template <typename T> typename make_caster<T>::template cast_op_type<T> cast_op(make_caster<T> &caster) {
    return caster.operator typename make_caster<T>::template cast_op_type<T>();
}
template <typename T> typename make_caster<T>::template cast_op_type<typename std::add_rvalue_reference<T>::type>
cast_op(make_caster<T> &&caster) {
    return std::move(caster).operator
        typename make_caster<T>::template cast_op_type<typename std::add_rvalue_reference<T>::type>();
}

template <typename type> class type_caster<std::reference_wrapper<type>> {
private:
    using caster_t = make_caster<type>;
    caster_t subcaster;
    using subcaster_cast_op_type = typename caster_t::template cast_op_type<type>;
    static_assert(std::is_same<typename std::remove_const<type>::type &, subcaster_cast_op_type>::value,
            "std::reference_wrapper<T> caster requires T to have a caster with an `T &` operator");
public:
    bool load(handle src, bool convert) { return subcaster.load(src, convert); }
    static PYBIND11_DESCR name() { return caster_t::name(); }
    static handle cast(const std::reference_wrapper<type> &src, return_value_policy policy, handle parent) {
        // It is definitely wrong to take ownership of this pointer, so mask that rvp
        if (policy == return_value_policy::take_ownership || policy == return_value_policy::automatic)
            policy = return_value_policy::automatic_reference;
        return caster_t::cast(&src.get(), policy, parent);
    }
    template <typename T> using cast_op_type = std::reference_wrapper<type>;
    operator std::reference_wrapper<type>() { return subcaster.operator subcaster_cast_op_type&(); }
};

#define PYBIND11_TYPE_CASTER(type, py_name) \
    protected: \
        type value; \
    public: \
        static PYBIND11_DESCR name() { return type_descr(py_name); } \
        template <typename T_, enable_if_t<std::is_same<type, remove_cv_t<T_>>::value, int> = 0> \
        static handle cast(T_ *src, return_value_policy policy, handle parent) { \
            if (!src) return none().release(); \
            if (policy == return_value_policy::take_ownership) { \
                auto h = cast(std::move(*src), policy, parent); delete src; return h; \
            } else { \
                return cast(*src, policy, parent); \
            } \
        } \
        operator type*() { return &value; } \
        operator type&() { return value; } \
        operator type&&() && { return std::move(value); } \
        template <typename T_> using cast_op_type = pybind11::detail::movable_cast_op_type<T_>


template <typename CharT> using is_std_char_type = any_of<
    std::is_same<CharT, char>, /* std::string */
    std::is_same<CharT, char16_t>, /* std::u16string */
    std::is_same<CharT, char32_t>, /* std::u32string */
    std::is_same<CharT, wchar_t> /* std::wstring */
>;

template <typename T>
struct type_caster<T, enable_if_t<std::is_arithmetic<T>::value && !is_std_char_type<T>::value>> {
    using _py_type_0 = conditional_t<sizeof(T) <= sizeof(long), long, long long>;
    using _py_type_1 = conditional_t<std::is_signed<T>::value, _py_type_0, typename std::make_unsigned<_py_type_0>::type>;
    using py_type = conditional_t<std::is_floating_point<T>::value, double, _py_type_1>;
public:

    bool load(handle src, bool convert) {
        py_type py_value;

        if (!src)
            return false;

        if (std::is_floating_point<T>::value) {
            if (convert || PyFloat_Check(src.ptr()))
                py_value = (py_type) PyFloat_AsDouble(src.ptr());
            else
                return false;
        } else if (PyFloat_Check(src.ptr())) {
            return false;
        } else if (std::is_unsigned<py_type>::value) {
            py_value = as_unsigned<py_type>(src.ptr());
        } else { // signed integer:
            py_value = sizeof(T) <= sizeof(long)
                ? (py_type) PyLong_AsLong(src.ptr())
                : (py_type) PYBIND11_LONG_AS_LONGLONG(src.ptr());
        }

        bool py_err = py_value == (py_type) -1 && PyErr_Occurred();
        if (py_err || (std::is_integral<T>::value && sizeof(py_type) != sizeof(T) &&
                       (py_value < (py_type) std::numeric_limits<T>::min() ||
                        py_value > (py_type) std::numeric_limits<T>::max()))) {
            bool type_error = py_err && PyErr_ExceptionMatches(
#if PY_VERSION_HEX < 0x03000000 && !defined(PYPY_VERSION)
                PyExc_SystemError
#else
                PyExc_TypeError
#endif
            );
            PyErr_Clear();
            if (type_error && convert && PyNumber_Check(src.ptr())) {
                auto tmp = reinterpret_borrow<object>(std::is_floating_point<T>::value
                                                      ? PyNumber_Float(src.ptr())
                                                      : PyNumber_Long(src.ptr()));
                PyErr_Clear();
                return load(tmp, false);
            }
            return false;
        }

        value = (T) py_value;
        return true;
    }

    static handle cast(T src, return_value_policy /* policy */, handle /* parent */) {
        if (std::is_floating_point<T>::value) {
            return PyFloat_FromDouble((double) src);
        } else if (sizeof(T) <= sizeof(long)) {
            if (std::is_signed<T>::value)
                return PyLong_FromLong((long) src);
            else
                return PyLong_FromUnsignedLong((unsigned long) src);
        } else {
            if (std::is_signed<T>::value)
                return PyLong_FromLongLong((long long) src);
            else
                return PyLong_FromUnsignedLongLong((unsigned long long) src);
        }
    }

    PYBIND11_TYPE_CASTER(T, _<std::is_integral<T>::value>("int", "float"));
};

template<typename T> struct void_caster {
public:
    bool load(handle src, bool) {
        if (src && src.is_none())
            return true;
        return false;
    }
    static handle cast(T, return_value_policy /* policy */, handle /* parent */) {
        return none().inc_ref();
    }
    PYBIND11_TYPE_CASTER(T, _("None"));
};

template <> class type_caster<void_type> : public void_caster<void_type> {};

template <> class type_caster<void> : public type_caster<void_type> {
public:
    using type_caster<void_type>::cast;

    bool load(handle h, bool) {
        if (!h) {
            return false;
        } else if (h.is_none()) {
            value = nullptr;
            return true;
        }

        /* Check if this is a capsule */
        if (isinstance<capsule>(h)) {
            value = reinterpret_borrow<capsule>(h);
            return true;
        }

        /* Check if this is a C++ type */
        auto &bases = all_type_info((PyTypeObject *) h.get_type().ptr());
        if (bases.size() == 1) { // Only allowing loading from a single-value type
            value = values_and_holders(reinterpret_cast<instance *>(h.ptr())).begin()->value_ptr();
            return true;
        }

        /* Fail */
        return false;
    }

    static handle cast(const void *ptr, return_value_policy /* policy */, handle /* parent */) {
        if (ptr)
            return capsule(ptr).release();
        else
            return none().inc_ref();
    }

    template <typename T> using cast_op_type = void*&;
    operator void *&() { return value; }
    static PYBIND11_DESCR name() { return type_descr(_("capsule")); }
private:
    void *value = nullptr;
};

template <> class type_caster<std::nullptr_t> : public void_caster<std::nullptr_t> { };

template <> class type_caster<bool> {
public:
    bool load(handle src, bool convert) {
        if (!src) return false;
        else if (src.ptr() == Py_True) { value = true; return true; }
        else if (src.ptr() == Py_False) { value = false; return true; }
        else if (convert || !strcmp("numpy.bool_", Py_TYPE(src.ptr())->tp_name)) {
            // (allow non-implicit conversion for numpy booleans)

            Py_ssize_t res = -1;
            if (src.is_none()) {
                res = 0;  // None is implicitly converted to False
            }
            #if defined(PYPY_VERSION)
            // On PyPy, check that "__bool__" (or "__nonzero__" on Python 2.7) attr exists
            else if (hasattr(src, PYBIND11_BOOL_ATTR)) {
                res = PyObject_IsTrue(src.ptr());
            }
            #else
            // Alternate approach for CPython: this does the same as the above, but optimized
            // using the CPython API so as to avoid an unneeded attribute lookup.
            else if (auto tp_as_number = src.ptr()->ob_type->tp_as_number) {
                if (PYBIND11_NB_BOOL(tp_as_number)) {
                    res = (*PYBIND11_NB_BOOL(tp_as_number))(src.ptr());
                }
            }
            #endif
            if (res == 0 || res == 1) {
                value = (bool) res;
                return true;
            }
        }
        return false;
    }
    static handle cast(bool src, return_value_policy /* policy */, handle /* parent */) {
        return handle(src ? Py_True : Py_False).inc_ref();
    }
    PYBIND11_TYPE_CASTER(bool, _("bool"));
};

// Helper class for UTF-{8,16,32} C++ stl strings:
template <typename StringType, bool IsView = false> struct string_caster {
    using CharT = typename StringType::value_type;

    // Simplify life by being able to assume standard char sizes (the standard only guarantees
    // minimums, but Python requires exact sizes)
    static_assert(!std::is_same<CharT, char>::value || sizeof(CharT) == 1, "Unsupported char size != 1");
    static_assert(!std::is_same<CharT, char16_t>::value || sizeof(CharT) == 2, "Unsupported char16_t size != 2");
    static_assert(!std::is_same<CharT, char32_t>::value || sizeof(CharT) == 4, "Unsupported char32_t size != 4");
    // wchar_t can be either 16 bits (Windows) or 32 (everywhere else)
    static_assert(!std::is_same<CharT, wchar_t>::value || sizeof(CharT) == 2 || sizeof(CharT) == 4,
            "Unsupported wchar_t size != 2/4");
    static constexpr size_t UTF_N = 8 * sizeof(CharT);

    bool load(handle src, bool) {
#if PY_MAJOR_VERSION < 3
        object temp;
#endif
        handle load_src = src;
        if (!src) {
            return false;
        } else if (!PyUnicode_Check(load_src.ptr())) {
#if PY_MAJOR_VERSION >= 3
            return load_bytes(load_src);
#else
            if (sizeof(CharT) == 1) {
                return load_bytes(load_src);
            }

            // The below is a guaranteed failure in Python 3 when PyUnicode_Check returns false
            if (!PYBIND11_BYTES_CHECK(load_src.ptr()))
                return false;

            temp = reinterpret_steal<object>(PyUnicode_FromObject(load_src.ptr()));
            if (!temp) { PyErr_Clear(); return false; }
            load_src = temp;
#endif
        }

        object utfNbytes = reinterpret_steal<object>(PyUnicode_AsEncodedString(
            load_src.ptr(), UTF_N == 8 ? "utf-8" : UTF_N == 16 ? "utf-16" : "utf-32", nullptr));
        if (!utfNbytes) { PyErr_Clear(); return false; }

        const CharT *buffer = reinterpret_cast<const CharT *>(PYBIND11_BYTES_AS_STRING(utfNbytes.ptr()));
        size_t length = (size_t) PYBIND11_BYTES_SIZE(utfNbytes.ptr()) / sizeof(CharT);
        if (UTF_N > 8) { buffer++; length--; } // Skip BOM for UTF-16/32
        value = StringType(buffer, length);

        // If we're loading a string_view we need to keep the encoded Python object alive:
        if (IsView)
            loader_life_support::add_patient(utfNbytes);

        return true;
    }

    static handle cast(const StringType &src, return_value_policy /* policy */, handle /* parent */) {
        const char *buffer = reinterpret_cast<const char *>(src.data());
        ssize_t nbytes = ssize_t(src.size() * sizeof(CharT));
        handle s = decode_utfN(buffer, nbytes);
        if (!s) throw error_already_set();
        return s;
    }

    PYBIND11_TYPE_CASTER(StringType, _(PYBIND11_STRING_NAME));

private:
    static handle decode_utfN(const char *buffer, ssize_t nbytes) {
#if !defined(PYPY_VERSION)
        return
            UTF_N == 8  ? PyUnicode_DecodeUTF8(buffer, nbytes, nullptr) :
            UTF_N == 16 ? PyUnicode_DecodeUTF16(buffer, nbytes, nullptr, nullptr) :
                          PyUnicode_DecodeUTF32(buffer, nbytes, nullptr, nullptr);
#else
        // PyPy seems to have multiple problems related to PyUnicode_UTF*: the UTF8 version
        // sometimes segfaults for unknown reasons, while the UTF16 and 32 versions require a
        // non-const char * arguments, which is also a nuissance, so bypass the whole thing by just
        // passing the encoding as a string value, which works properly:
        return PyUnicode_Decode(buffer, nbytes, UTF_N == 8 ? "utf-8" : UTF_N == 16 ? "utf-16" : "utf-32", nullptr);
#endif
    }

    // When loading into a std::string or char*, accept a bytes object as-is (i.e.
    // without any encoding/decoding attempt).  For other C++ char sizes this is a no-op.
    // which supports loading a unicode from a str, doesn't take this path.
    template <typename C = CharT>
    bool load_bytes(enable_if_t<sizeof(C) == 1, handle> src) {
        if (PYBIND11_BYTES_CHECK(src.ptr())) {
            // We were passed a Python 3 raw bytes; accept it into a std::string or char*
            // without any encoding attempt.
            const char *bytes = PYBIND11_BYTES_AS_STRING(src.ptr());
            if (bytes) {
                value = StringType(bytes, (size_t) PYBIND11_BYTES_SIZE(src.ptr()));
                return true;
            }
        }

        return false;
    }

    template <typename C = CharT>
    bool load_bytes(enable_if_t<sizeof(C) != 1, handle>) { return false; }
};

template <typename CharT, class Traits, class Allocator>
struct type_caster<std::basic_string<CharT, Traits, Allocator>, enable_if_t<is_std_char_type<CharT>::value>>
    : string_caster<std::basic_string<CharT, Traits, Allocator>> {};

#ifdef PYBIND11_HAS_STRING_VIEW
template <typename CharT, class Traits>
struct type_caster<std::basic_string_view<CharT, Traits>, enable_if_t<is_std_char_type<CharT>::value>>
    : string_caster<std::basic_string_view<CharT, Traits>, true> {};
#endif

// Type caster for C-style strings.  We basically use a std::string type caster, but also add the
// ability to use None as a nullptr char* (which the string caster doesn't allow).
template <typename CharT> struct type_caster<CharT, enable_if_t<is_std_char_type<CharT>::value>> {
    using StringType = std::basic_string<CharT>;
    using StringCaster = type_caster<StringType>;
    StringCaster str_caster;
    bool none = false;
public:
    bool load(handle src, bool convert) {
        if (!src) return false;
        if (src.is_none()) {
            // Defer accepting None to other overloads (if we aren't in convert mode):
            if (!convert) return false;
            none = true;
            return true;
        }
        return str_caster.load(src, convert);
    }

    static handle cast(const CharT *src, return_value_policy policy, handle parent) {
        if (src == nullptr) return pybind11::none().inc_ref();
        return StringCaster::cast(StringType(src), policy, parent);
    }

    static handle cast(CharT src, return_value_policy policy, handle parent) {
        if (std::is_same<char, CharT>::value) {
            handle s = PyUnicode_DecodeLatin1((const char *) &src, 1, nullptr);
            if (!s) throw error_already_set();
            return s;
        }
        return StringCaster::cast(StringType(1, src), policy, parent);
    }

    operator CharT*() { return none ? nullptr : const_cast<CharT *>(static_cast<StringType &>(str_caster).c_str()); }
    operator CharT() {
        if (none)
            throw value_error("Cannot convert None to a character");

        auto &value = static_cast<StringType &>(str_caster);
        size_t str_len = value.size();
        if (str_len == 0)
            throw value_error("Cannot convert empty string to a character");

        // If we're in UTF-8 mode, we have two possible failures: one for a unicode character that
        // is too high, and one for multiple unicode characters (caught later), so we need to figure
        // out how long the first encoded character is in bytes to distinguish between these two
        // errors.  We also allow want to allow unicode characters U+0080 through U+00FF, as those
        // can fit into a single char value.
        if (StringCaster::UTF_N == 8 && str_len > 1 && str_len <= 4) {
            unsigned char v0 = static_cast<unsigned char>(value[0]);
            size_t char0_bytes = !(v0 & 0x80) ? 1 : // low bits only: 0-127
                (v0 & 0xE0) == 0xC0 ? 2 : // 0b110xxxxx - start of 2-byte sequence
                (v0 & 0xF0) == 0xE0 ? 3 : // 0b1110xxxx - start of 3-byte sequence
                4; // 0b11110xxx - start of 4-byte sequence

            if (char0_bytes == str_len) {
                // If we have a 128-255 value, we can decode it into a single char:
                if (char0_bytes == 2 && (v0 & 0xFC) == 0xC0) { // 0x110000xx 0x10xxxxxx
                    return static_cast<CharT>(((v0 & 3) << 6) + (static_cast<unsigned char>(value[1]) & 0x3F));
                }
                // Otherwise we have a single character, but it's > U+00FF
                throw value_error("Character code point not in range(0x100)");
            }
        }

        // UTF-16 is much easier: we can only have a surrogate pair for values above U+FFFF, thus a
        // surrogate pair with total length 2 instantly indicates a range error (but not a "your
        // string was too long" error).
        else if (StringCaster::UTF_N == 16 && str_len == 2) {
            char16_t v0 = static_cast<char16_t>(value[0]);
            if (v0 >= 0xD800 && v0 < 0xE000)
                throw value_error("Character code point not in range(0x10000)");
        }

        if (str_len != 1)
            throw value_error("Expected a character, but multi-character string found");

        return value[0];
    }

    static PYBIND11_DESCR name() { return type_descr(_(PYBIND11_STRING_NAME)); }
    template <typename _T> using cast_op_type = remove_reference_t<pybind11::detail::cast_op_type<_T>>;
};

// Base implementation for std::tuple and std::pair
template <template<typename...> class Tuple, typename... Ts> class tuple_caster {
    using type = Tuple<Ts...>;
    static constexpr auto size = sizeof...(Ts);
    using indices = make_index_sequence<size>;
public:

    bool load(handle src, bool convert) {
        if (!isinstance<sequence>(src))
            return false;
        const auto seq = reinterpret_borrow<sequence>(src);
        if (seq.size() != size)
            return false;
        return load_impl(seq, convert, indices{});
    }

    template <typename T>
    static handle cast(T &&src, return_value_policy policy, handle parent) {
        return cast_impl(std::forward<T>(src), policy, parent, indices{});
    }

    static PYBIND11_DESCR name() {
        return type_descr(_("Tuple[") + detail::concat(make_caster<Ts>::name()...) + _("]"));
    }

    template <typename T> using cast_op_type = type;

    operator type() & { return implicit_cast(indices{}); }
    operator type() && { return std::move(*this).implicit_cast(indices{}); }

protected:
    template <size_t... Is>
    type implicit_cast(index_sequence<Is...>) & { return type(cast_op<Ts>(std::get<Is>(subcasters))...); }
    template <size_t... Is>
    type implicit_cast(index_sequence<Is...>) && { return type(cast_op<Ts>(std::move(std::get<Is>(subcasters)))...); }

    static constexpr bool load_impl(const sequence &, bool, index_sequence<>) { return true; }

    template <size_t... Is>
    bool load_impl(const sequence &seq, bool convert, index_sequence<Is...>) {
        for (bool r : {std::get<Is>(subcasters).load(seq[Is], convert)...})
            if (!r)
                return false;
        return true;
    }

    /* Implementation: Convert a C++ tuple into a Python tuple */
    template <typename T, size_t... Is>
    static handle cast_impl(T &&src, return_value_policy policy, handle parent, index_sequence<Is...>) {
        std::array<object, size> entries{{
            reinterpret_steal<object>(make_caster<Ts>::cast(std::get<Is>(std::forward<T>(src)), policy, parent))...
        }};
        for (const auto &entry: entries)
            if (!entry)
                return handle();
        tuple result(size);
        int counter = 0;
        for (auto & entry: entries)
            PyTuple_SET_ITEM(result.ptr(), counter++, entry.release().ptr());
        return result.release();
    }

    Tuple<make_caster<Ts>...> subcasters;
};

template <typename T1, typename T2> class type_caster<std::pair<T1, T2>>
    : public tuple_caster<std::pair, T1, T2> {};

template <typename... Ts> class type_caster<std::tuple<Ts...>>
    : public tuple_caster<std::tuple, Ts...> {};

/// Helper class which abstracts away certain actions. Users can provide specializations for
/// custom holders, but it's only necessary if the type has a non-standard interface.
template <typename T>
struct holder_helper {
    static auto get(const T &p) -> decltype(p.get()) { return p.get(); }
};

/// Type caster for holder types like std::shared_ptr, etc.
template <typename type, typename holder_type>
struct copyable_holder_caster : public type_caster_base<type> {
public:
    using base = type_caster_base<type>;
    static_assert(std::is_base_of<base, type_caster<type>>::value,
            "Holder classes are only supported for custom types");
    using base::base;
    using base::cast;
    using base::typeinfo;
    using base::value;

    bool load(handle src, bool convert) {
        return base::template load_impl<copyable_holder_caster<type, holder_type>>(src, convert);
    }

    explicit operator type*() { return this->value; }
    explicit operator type&() { return *(this->value); }
    explicit operator holder_type*() { return &holder; }

    // Workaround for Intel compiler bug
    // see pybind11 issue 94
    #if defined(__ICC) || defined(__INTEL_COMPILER)
    operator holder_type&() { return holder; }
    #else
    explicit operator holder_type&() { return holder; }
    #endif

    static handle cast(const holder_type &src, return_value_policy, handle) {
        const auto *ptr = holder_helper<holder_type>::get(src);
        return type_caster_base<type>::cast_holder(ptr, &src);
    }

protected:
    friend class type_caster_generic;
    void check_holder_compat() {
        if (typeinfo->default_holder)
            throw cast_error("Unable to load a custom holder type from a default-holder instance");
    }

    bool load_value(const value_and_holder &v_h) {
        if (v_h.holder_constructed()) {
            value = v_h.value_ptr();
            holder = v_h.holder<holder_type>();
            return true;
        } else {
            throw cast_error("Unable to cast from non-held to held instance (T& to Holder<T>) "
#if defined(NDEBUG)
                             "(compile in debug mode for type information)");
#else
                             "of type '" + type_id<holder_type>() + "''");
#endif
        }
    }

    template <typename T = holder_type, detail::enable_if_t<!std::is_constructible<T, const T &, type*>::value, int> = 0>
    bool try_implicit_casts(handle, bool) { return false; }

    template <typename T = holder_type, detail::enable_if_t<std::is_constructible<T, const T &, type*>::value, int> = 0>
    bool try_implicit_casts(handle src, bool convert) {
        for (auto &cast : typeinfo->implicit_casts) {
            copyable_holder_caster sub_caster(*cast.first);
            if (sub_caster.load(src, convert)) {
                value = cast.second(sub_caster.value);
                holder = holder_type(sub_caster.holder, (type *) value);
                return true;
            }
        }
        return false;
    }

    static bool try_direct_conversions(handle) { return false; }


    holder_type holder;
};

/// Specialize for the common std::shared_ptr, so users don't need to
template <typename T>
class type_caster<std::shared_ptr<T>> : public copyable_holder_caster<T, std::shared_ptr<T>> { };

template <typename type, typename holder_type>
struct move_only_holder_caster {
    static_assert(std::is_base_of<type_caster_base<type>, type_caster<type>>::value,
            "Holder classes are only supported for custom types");

    static handle cast(holder_type &&src, return_value_policy, handle) {
        auto *ptr = holder_helper<holder_type>::get(src);
        return type_caster_base<type>::cast_holder(ptr, &src);
    }
    static PYBIND11_DESCR name() { return type_caster_base<type>::name(); }
};

template <typename type, typename deleter>
class type_caster<std::unique_ptr<type, deleter>>
    : public move_only_holder_caster<type, std::unique_ptr<type, deleter>> { };

template <typename type, typename holder_type>
using type_caster_holder = conditional_t<is_copy_constructible<holder_type>::value,
                                         copyable_holder_caster<type, holder_type>,
                                         move_only_holder_caster<type, holder_type>>;

template <typename T, bool Value = false> struct always_construct_holder { static constexpr bool value = Value; };

/// Create a specialization for custom holder types (silently ignores std::shared_ptr)
#define PYBIND11_DECLARE_HOLDER_TYPE(type, holder_type, ...) \
    namespace pybind11 { namespace detail { \
    template <typename type> \
    struct always_construct_holder<holder_type> : always_construct_holder<void, ##__VA_ARGS__>  { }; \
    template <typename type> \
    class type_caster<holder_type, enable_if_t<!is_shared_ptr<holder_type>::value>> \
        : public type_caster_holder<type, holder_type> { }; \
    }}

// PYBIND11_DECLARE_HOLDER_TYPE holder types:
template <typename base, typename holder> struct is_holder_type :
    std::is_base_of<detail::type_caster_holder<base, holder>, detail::type_caster<holder>> {};
// Specialization for always-supported unique_ptr holders:
template <typename base, typename deleter> struct is_holder_type<base, std::unique_ptr<base, deleter>> :
    std::true_type {};

template <typename T> struct handle_type_name { static PYBIND11_DESCR name() { return _<T>(); } };
template <> struct handle_type_name<bytes> { static PYBIND11_DESCR name() { return _(PYBIND11_BYTES_NAME); } };
template <> struct handle_type_name<args> { static PYBIND11_DESCR name() { return _("*args"); } };
template <> struct handle_type_name<kwargs> { static PYBIND11_DESCR name() { return _("**kwargs"); } };

template <typename type>
struct pyobject_caster {
    template <typename T = type, enable_if_t<std::is_same<T, handle>::value, int> = 0>
    bool load(handle src, bool /* convert */) { value = src; return static_cast<bool>(value); }

    template <typename T = type, enable_if_t<std::is_base_of<object, T>::value, int> = 0>
    bool load(handle src, bool /* convert */) {
        if (!isinstance<type>(src))
            return false;
        value = reinterpret_borrow<type>(src);
        return true;
    }

    static handle cast(const handle &src, return_value_policy /* policy */, handle /* parent */) {
        return src.inc_ref();
    }
    PYBIND11_TYPE_CASTER(type, handle_type_name<type>::name());
};

template <typename T>
class type_caster<T, enable_if_t<is_pyobject<T>::value>> : public pyobject_caster<T> { };

// Our conditions for enabling moving are quite restrictive:
// At compile time:
// - T needs to be a non-const, non-pointer, non-reference type
// - type_caster<T>::operator T&() must exist
// - the type must be move constructible (obviously)
// At run-time:
// - if the type is non-copy-constructible, the object must be the sole owner of the type (i.e. it
//   must have ref_count() == 1)h
// If any of the above are not satisfied, we fall back to copying.
template <typename T> using move_is_plain_type = satisfies_none_of<T,
    std::is_void, std::is_pointer, std::is_reference, std::is_const
>;
template <typename T, typename SFINAE = void> struct move_always : std::false_type {};
template <typename T> struct move_always<T, enable_if_t<all_of<
    move_is_plain_type<T>,
    negation<is_copy_constructible<T>>,
    std::is_move_constructible<T>,
    std::is_same<decltype(std::declval<make_caster<T>>().operator T&()), T&>
>::value>> : std::true_type {};
template <typename T, typename SFINAE = void> struct move_if_unreferenced : std::false_type {};
template <typename T> struct move_if_unreferenced<T, enable_if_t<all_of<
    move_is_plain_type<T>,
    negation<move_always<T>>,
    std::is_move_constructible<T>,
    std::is_same<decltype(std::declval<make_caster<T>>().operator T&()), T&>
>::value>> : std::true_type {};
template <typename T> using move_never = none_of<move_always<T>, move_if_unreferenced<T>>;

// Detect whether returning a `type` from a cast on type's type_caster is going to result in a
// reference or pointer to a local variable of the type_caster.  Basically, only
// non-reference/pointer `type`s and reference/pointers from a type_caster_generic are safe;
// everything else returns a reference/pointer to a local variable.
template <typename type> using cast_is_temporary_value_reference = bool_constant<
    (std::is_reference<type>::value || std::is_pointer<type>::value) &&
    !std::is_base_of<type_caster_generic, make_caster<type>>::value
>;

// When a value returned from a C++ function is being cast back to Python, we almost always want to
// force `policy = move`, regardless of the return value policy the function/method was declared
// with.  Some classes (most notably Eigen::Ref and related) need to avoid this, and so can do so by
// specializing this struct.
template <typename Return, typename SFINAE = void> struct return_value_policy_override {
    static return_value_policy policy(return_value_policy p) {
        return !std::is_lvalue_reference<Return>::value && !std::is_pointer<Return>::value
            ? return_value_policy::move : p;
    }
};

// Basic python -> C++ casting; throws if casting fails
template <typename T, typename SFINAE> type_caster<T, SFINAE> &load_type(type_caster<T, SFINAE> &conv, const handle &handle) {
    if (!conv.load(handle, true)) {
#if defined(NDEBUG)
        throw cast_error("Unable to cast Python instance to C++ type (compile in debug mode for details)");
#else
        throw cast_error("Unable to cast Python instance of type " +
            (std::string) str(handle.get_type()) + " to C++ type '" + type_id<T>() + "''");
#endif
    }
    return conv;
}
// Wrapper around the above that also constructs and returns a type_caster
template <typename T> make_caster<T> load_type(const handle &handle) {
    make_caster<T> conv;
    load_type(conv, handle);
    return conv;
}

NAMESPACE_END(detail)

// pytype -> C++ type
template <typename T, detail::enable_if_t<!detail::is_pyobject<T>::value, int> = 0>
T cast(const handle &handle) {
    using namespace detail;
    static_assert(!cast_is_temporary_value_reference<T>::value,
            "Unable to cast type to reference: value is local to type caster");
    return cast_op<T>(load_type<T>(handle));
}

// pytype -> pytype (calls converting constructor)
template <typename T, detail::enable_if_t<detail::is_pyobject<T>::value, int> = 0>
T cast(const handle &handle) { return T(reinterpret_borrow<object>(handle)); }

// C++ type -> py::object
template <typename T, detail::enable_if_t<!detail::is_pyobject<T>::value, int> = 0>
object cast(const T &value, return_value_policy policy = return_value_policy::automatic_reference,
            handle parent = handle()) {
    if (policy == return_value_policy::automatic)
        policy = std::is_pointer<T>::value ? return_value_policy::take_ownership : return_value_policy::copy;
    else if (policy == return_value_policy::automatic_reference)
        policy = std::is_pointer<T>::value ? return_value_policy::reference : return_value_policy::copy;
    return reinterpret_steal<object>(detail::make_caster<T>::cast(value, policy, parent));
}

template <typename T> T handle::cast() const { return pybind11::cast<T>(*this); }
template <> inline void handle::cast() const { return; }

template <typename T>
detail::enable_if_t<!detail::move_never<T>::value, T> move(object &&obj) {
    if (obj.ref_count() > 1)
#if defined(NDEBUG)
        throw cast_error("Unable to cast Python instance to C++ rvalue: instance has multiple references"
            " (compile in debug mode for details)");
#else
        throw cast_error("Unable to move from Python " + (std::string) str(obj.get_type()) +
                " instance to C++ " + type_id<T>() + " instance: instance has multiple references");
#endif

    // Move into a temporary and return that, because the reference may be a local value of `conv`
    T ret = std::move(detail::load_type<T>(obj).operator T&());
    return ret;
}

// Calling cast() on an rvalue calls pybind::cast with the object rvalue, which does:
// - If we have to move (because T has no copy constructor), do it.  This will fail if the moved
//   object has multiple references, but trying to copy will fail to compile.
// - If both movable and copyable, check ref count: if 1, move; otherwise copy
// - Otherwise (not movable), copy.
template <typename T> detail::enable_if_t<detail::move_always<T>::value, T> cast(object &&object) {
    return move<T>(std::move(object));
}
template <typename T> detail::enable_if_t<detail::move_if_unreferenced<T>::value, T> cast(object &&object) {
    if (object.ref_count() > 1)
        return cast<T>(object);
    else
        return move<T>(std::move(object));
}
template <typename T> detail::enable_if_t<detail::move_never<T>::value, T> cast(object &&object) {
    return cast<T>(object);
}

template <typename T> T object::cast() const & { return pybind11::cast<T>(*this); }
template <typename T> T object::cast() && { return pybind11::cast<T>(std::move(*this)); }
template <> inline void object::cast() const & { return; }
template <> inline void object::cast() && { return; }

NAMESPACE_BEGIN(detail)

// Declared in pytypes.h:
template <typename T, enable_if_t<!is_pyobject<T>::value, int>>
object object_or_cast(T &&o) { return pybind11::cast(std::forward<T>(o)); }

struct overload_unused {}; // Placeholder type for the unneeded (and dead code) static variable in the OVERLOAD_INT macro
template <typename ret_type> using overload_caster_t = conditional_t<
    cast_is_temporary_value_reference<ret_type>::value, make_caster<ret_type>, overload_unused>;

// Trampoline use: for reference/pointer types to value-converted values, we do a value cast, then
// store the result in the given variable.  For other types, this is a no-op.
template <typename T> enable_if_t<cast_is_temporary_value_reference<T>::value, T> cast_ref(object &&o, make_caster<T> &caster) {
    return cast_op<T>(load_type(caster, o));
}
template <typename T> enable_if_t<!cast_is_temporary_value_reference<T>::value, T> cast_ref(object &&, overload_unused &) {
    pybind11_fail("Internal error: cast_ref fallback invoked"); }

// Trampoline use: Having a pybind11::cast with an invalid reference type is going to static_assert, even
// though if it's in dead code, so we provide a "trampoline" to pybind11::cast that only does anything in
// cases where pybind11::cast is valid.
template <typename T> enable_if_t<!cast_is_temporary_value_reference<T>::value, T> cast_safe(object &&o) {
    return pybind11::cast<T>(std::move(o)); }
template <typename T> enable_if_t<cast_is_temporary_value_reference<T>::value, T> cast_safe(object &&) {
    pybind11_fail("Internal error: cast_safe fallback invoked"); }
template <> inline void cast_safe<void>(object &&) {}

NAMESPACE_END(detail)

template <return_value_policy policy = return_value_policy::automatic_reference,
          typename... Args> tuple make_tuple(Args&&... args_) {
    constexpr size_t size = sizeof...(Args);
    std::array<object, size> args {
        { reinterpret_steal<object>(detail::make_caster<Args>::cast(
            std::forward<Args>(args_), policy, nullptr))... }
    };
    for (size_t i = 0; i < args.size(); i++) {
        if (!args[i]) {
#if defined(NDEBUG)
            throw cast_error("make_tuple(): unable to convert arguments to Python object (compile in debug mode for details)");
#else
            std::array<std::string, size> argtypes { {type_id<Args>()...} };
            throw cast_error("make_tuple(): unable to convert argument of type '" +
                argtypes[i] + "' to Python object");
#endif
        }
    }
    tuple result(size);
    int counter = 0;
    for (auto &arg_value : args)
        PyTuple_SET_ITEM(result.ptr(), counter++, arg_value.release().ptr());
    return result;
}

/// \ingroup annotations
/// Annotation for arguments
struct arg {
    /// Constructs an argument with the name of the argument; if null or omitted, this is a positional argument.
    constexpr explicit arg(const char *name = nullptr) : name(name), flag_noconvert(false), flag_none(true) { }
    /// Assign a value to this argument
    template <typename T> arg_v operator=(T &&value) const;
    /// Indicate that the type should not be converted in the type caster
    arg &noconvert(bool flag = true) { flag_noconvert = flag; return *this; }
    /// Indicates that the argument should/shouldn't allow None (e.g. for nullable pointer args)
    arg &none(bool flag = true) { flag_none = flag; return *this; }

    const char *name; ///< If non-null, this is a named kwargs argument
    bool flag_noconvert : 1; ///< If set, do not allow conversion (requires a supporting type caster!)
    bool flag_none : 1; ///< If set (the default), allow None to be passed to this argument
};

/// \ingroup annotations
/// Annotation for arguments with values
struct arg_v : arg {
private:
    template <typename T>
    arg_v(arg &&base, T &&x, const char *descr = nullptr)
        : arg(base),
          value(reinterpret_steal<object>(
              detail::make_caster<T>::cast(x, return_value_policy::automatic, {})
          )),
          descr(descr)
#if !defined(NDEBUG)
        , type(type_id<T>())
#endif
    { }

public:
    /// Direct construction with name, default, and description
    template <typename T>
    arg_v(const char *name, T &&x, const char *descr = nullptr)
        : arg_v(arg(name), std::forward<T>(x), descr) { }

    /// Called internally when invoking `py::arg("a") = value`
    template <typename T>
    arg_v(const arg &base, T &&x, const char *descr = nullptr)
        : arg_v(arg(base), std::forward<T>(x), descr) { }

    /// Same as `arg::noconvert()`, but returns *this as arg_v&, not arg&
    arg_v &noconvert(bool flag = true) { arg::noconvert(flag); return *this; }

    /// Same as `arg::nonone()`, but returns *this as arg_v&, not arg&
    arg_v &none(bool flag = true) { arg::none(flag); return *this; }

    /// The default value
    object value;
    /// The (optional) description of the default value
    const char *descr;
#if !defined(NDEBUG)
    /// The C++ type name of the default value (only available when compiled in debug mode)
    std::string type;
#endif
};

template <typename T>
arg_v arg::operator=(T &&value) const { return {std::move(*this), std::forward<T>(value)}; }

/// Alias for backward compatibility -- to be removed in version 2.0
template <typename /*unused*/> using arg_t = arg_v;

inline namespace literals {
/** \rst
    String literal version of `arg`
 \endrst */
constexpr arg operator"" _a(const char *name, size_t) { return arg(name); }
}

NAMESPACE_BEGIN(detail)

// forward declaration (definition in attr.h)
struct function_record;

/// Internal data associated with a single function call
struct function_call {
    function_call(function_record &f, handle p); // Implementation in attr.h

    /// The function data:
    const function_record &func;

    /// Arguments passed to the function:
    std::vector<handle> args;

    /// The `convert` value the arguments should be loaded with
    std::vector<bool> args_convert;

    /// The parent, if any
    handle parent;
};


/// Helper class which loads arguments for C++ functions called from Python
template <typename... Args>
class argument_loader {
    using indices = make_index_sequence<sizeof...(Args)>;

    template <typename Arg> using argument_is_args   = std::is_same<intrinsic_t<Arg>, args>;
    template <typename Arg> using argument_is_kwargs = std::is_same<intrinsic_t<Arg>, kwargs>;
    // Get args/kwargs argument positions relative to the end of the argument list:
    static constexpr auto args_pos = constexpr_first<argument_is_args, Args...>() - (int) sizeof...(Args),
                        kwargs_pos = constexpr_first<argument_is_kwargs, Args...>() - (int) sizeof...(Args);

    static constexpr bool args_kwargs_are_last = kwargs_pos >= - 1 && args_pos >= kwargs_pos - 1;

    static_assert(args_kwargs_are_last, "py::args/py::kwargs are only permitted as the last argument(s) of a function");

public:
    static constexpr bool has_kwargs = kwargs_pos < 0;
    static constexpr bool has_args = args_pos < 0;

    static PYBIND11_DESCR arg_names() { return detail::concat(make_caster<Args>::name()...); }

    bool load_args(function_call &call) {
        return load_impl_sequence(call, indices{});
    }

    template <typename Return, typename Guard, typename Func>
    enable_if_t<!std::is_void<Return>::value, Return> call(Func &&f) && {
        return std::move(*this).template call_impl<Return>(std::forward<Func>(f), indices{}, Guard{});
    }

    template <typename Return, typename Guard, typename Func>
    enable_if_t<std::is_void<Return>::value, void_type> call(Func &&f) && {
        std::move(*this).template call_impl<Return>(std::forward<Func>(f), indices{}, Guard{});
        return void_type();
    }

private:

    static bool load_impl_sequence(function_call &, index_sequence<>) { return true; }

    template <size_t... Is>
    bool load_impl_sequence(function_call &call, index_sequence<Is...>) {
        for (bool r : {std::get<Is>(argcasters).load(call.args[Is], call.args_convert[Is])...})
            if (!r)
                return false;
        return true;
    }

    template <typename Return, typename Func, size_t... Is, typename Guard>
    Return call_impl(Func &&f, index_sequence<Is...>, Guard &&) {
        return std::forward<Func>(f)(cast_op<Args>(std::move(std::get<Is>(argcasters)))...);
    }

    std::tuple<make_caster<Args>...> argcasters;
};

/// Helper class which collects only positional arguments for a Python function call.
/// A fancier version below can collect any argument, but this one is optimal for simple calls.
template <return_value_policy policy>
class simple_collector {
public:
    template <typename... Ts>
    explicit simple_collector(Ts &&...values)
        : m_args(pybind11::make_tuple<policy>(std::forward<Ts>(values)...)) { }

    const tuple &args() const & { return m_args; }
    dict kwargs() const { return {}; }

    tuple args() && { return std::move(m_args); }

    /// Call a Python function and pass the collected arguments
    object call(PyObject *ptr) const {
        PyObject *result = PyObject_CallObject(ptr, m_args.ptr());
        if (!result)
            throw error_already_set();
        return reinterpret_steal<object>(result);
    }

private:
    tuple m_args;
};

/// Helper class which collects positional, keyword, * and ** arguments for a Python function call
template <return_value_policy policy>
class unpacking_collector {
public:
    template <typename... Ts>
    explicit unpacking_collector(Ts &&...values) {
        // Tuples aren't (easily) resizable so a list is needed for collection,
        // but the actual function call strictly requires a tuple.
        auto args_list = list();
        int _[] = { 0, (process(args_list, std::forward<Ts>(values)), 0)... };
        ignore_unused(_);

        m_args = std::move(args_list);
    }

    const tuple &args() const & { return m_args; }
    const dict &kwargs() const & { return m_kwargs; }

    tuple args() && { return std::move(m_args); }
    dict kwargs() && { return std::move(m_kwargs); }

    /// Call a Python function and pass the collected arguments
    object call(PyObject *ptr) const {
        PyObject *result = PyObject_Call(ptr, m_args.ptr(), m_kwargs.ptr());
        if (!result)
            throw error_already_set();
        return reinterpret_steal<object>(result);
    }

private:
    template <typename T>
    void process(list &args_list, T &&x) {
        auto o = reinterpret_steal<object>(detail::make_caster<T>::cast(std::forward<T>(x), policy, {}));
        if (!o) {
#if defined(NDEBUG)
            argument_cast_error();
#else
            argument_cast_error(std::to_string(args_list.size()), type_id<T>());
#endif
        }
        args_list.append(o);
    }

    void process(list &args_list, detail::args_proxy ap) {
        for (const auto &a : ap)
            args_list.append(a);
    }

    void process(list &/*args_list*/, arg_v a) {
        if (!a.name)
#if defined(NDEBUG)
            nameless_argument_error();
#else
            nameless_argument_error(a.type);
#endif

        if (m_kwargs.contains(a.name)) {
#if defined(NDEBUG)
            multiple_values_error();
#else
            multiple_values_error(a.name);
#endif
        }
        if (!a.value) {
#if defined(NDEBUG)
            argument_cast_error();
#else
            argument_cast_error(a.name, a.type);
#endif
        }
        m_kwargs[a.name] = a.value;
    }

    void process(list &/*args_list*/, detail::kwargs_proxy kp) {
        if (!kp)
            return;
        for (const auto &k : reinterpret_borrow<dict>(kp)) {
            if (m_kwargs.contains(k.first)) {
#if defined(NDEBUG)
                multiple_values_error();
#else
                multiple_values_error(str(k.first));
#endif
            }
            m_kwargs[k.first] = k.second;
        }
    }

    [[noreturn]] static void nameless_argument_error() {
        throw type_error("Got kwargs without a name; only named arguments "
                         "may be passed via py::arg() to a python function call. "
                         "(compile in debug mode for details)");
    }
    [[noreturn]] static void nameless_argument_error(std::string type) {
        throw type_error("Got kwargs without a name of type '" + type + "'; only named "
                         "arguments may be passed via py::arg() to a python function call. ");
    }
    [[noreturn]] static void multiple_values_error() {
        throw type_error("Got multiple values for keyword argument "
                         "(compile in debug mode for details)");
    }

    [[noreturn]] static void multiple_values_error(std::string name) {
        throw type_error("Got multiple values for keyword argument '" + name + "'");
    }

    [[noreturn]] static void argument_cast_error() {
        throw cast_error("Unable to convert call argument to Python object "
                         "(compile in debug mode for details)");
    }

    [[noreturn]] static void argument_cast_error(std::string name, std::string type) {
        throw cast_error("Unable to convert call argument '" + name
                         + "' of type '" + type + "' to Python object");
    }

private:
    tuple m_args;
    dict m_kwargs;
};

/// Collect only positional arguments for a Python function call
template <return_value_policy policy, typename... Args,
          typename = enable_if_t<all_of<is_positional<Args>...>::value>>
simple_collector<policy> collect_arguments(Args &&...args) {
    return simple_collector<policy>(std::forward<Args>(args)...);
}

/// Collect all arguments, including keywords and unpacking (only instantiated when needed)
template <return_value_policy policy, typename... Args,
          typename = enable_if_t<!all_of<is_positional<Args>...>::value>>
unpacking_collector<policy> collect_arguments(Args &&...args) {
    // Following argument order rules for generalized unpacking according to PEP 448
    static_assert(
        constexpr_last<is_positional, Args...>() < constexpr_first<is_keyword_or_ds, Args...>()
        && constexpr_last<is_s_unpacking, Args...>() < constexpr_first<is_ds_unpacking, Args...>(),
        "Invalid function call: positional args must precede keywords and ** unpacking; "
        "* unpacking must precede ** unpacking"
    );
    return unpacking_collector<policy>(std::forward<Args>(args)...);
}

template <typename Derived>
template <return_value_policy policy, typename... Args>
object object_api<Derived>::operator()(Args &&...args) const {
    return detail::collect_arguments<policy>(std::forward<Args>(args)...).call(derived().ptr());
}

template <typename Derived>
template <return_value_policy policy, typename... Args>
object object_api<Derived>::call(Args &&...args) const {
    return operator()<policy>(std::forward<Args>(args)...);
}

NAMESPACE_END(detail)

#define PYBIND11_MAKE_OPAQUE(Type) \
    namespace pybind11 { namespace detail { \
        template<> class type_caster<Type> : public type_caster_base<Type> { }; \
    }}

NAMESPACE_END(pybind11)