db_postprocess.py 9.6 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
L
LDOUBLEV 已提交
14
"""
L
LDOUBLEV 已提交
15
This code is refered from:
L
LDOUBLEV 已提交
16 17
https://github.com/WenmuZhou/DBNet.pytorch/blob/master/post_processing/seg_detector_representer.py
"""
L
LDOUBLEV 已提交
18 19 20 21 22 23
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import cv2
W
WenmuZhou 已提交
24
import paddle
L
LDOUBLEV 已提交
25 26 27 28 29 30 31 32 33
from shapely.geometry import Polygon
import pyclipper


class DBPostProcess(object):
    """
    The post process for Differentiable Binarization (DB).
    """

W
WenmuZhou 已提交
34 35 36 37 38
    def __init__(self,
                 thresh=0.3,
                 box_thresh=0.7,
                 max_candidates=1000,
                 unclip_ratio=2.0,
39
                 use_dilation=False,
littletomatodonkey's avatar
littletomatodonkey 已提交
40
                 score_mode="fast",
W
wangjingyeye 已提交
41
                 use_polygon=False,
W
WenmuZhou 已提交
42 43 44 45 46
                 **kwargs):
        self.thresh = thresh
        self.box_thresh = box_thresh
        self.max_candidates = max_candidates
        self.unclip_ratio = unclip_ratio
L
LDOUBLEV 已提交
47
        self.min_size = 3
littletomatodonkey's avatar
littletomatodonkey 已提交
48
        self.score_mode = score_mode
W
wangjingyeye 已提交
49
        self.use_polygon = use_polygon
littletomatodonkey's avatar
littletomatodonkey 已提交
50 51 52 53
        assert score_mode in [
            "slow", "fast"
        ], "Score mode must be in [slow, fast] but got: {}".format(score_mode)

W
WenmuZhou 已提交
54 55
        self.dilation_kernel = None if not use_dilation else np.array(
            [[1, 1], [1, 1]])
L
LDOUBLEV 已提交
56

W
wangjingyeye 已提交
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
    def polygons_from_bitmap(self, pred, _bitmap, dest_width, dest_height):
        '''
        _bitmap: single map with shape (1, H, W),
            whose values are binarized as {0, 1}
        '''

        bitmap = _bitmap
        height, width = bitmap.shape

        boxes = []
        scores = []

        contours, _ = cv2.findContours((bitmap * 255).astype(np.uint8),
                                       cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)

        for contour in contours[:self.max_candidates]:
            epsilon = 0.002 * cv2.arcLength(contour, True)
            approx = cv2.approxPolyDP(contour, epsilon, True)
            points = approx.reshape((-1, 2))
            if points.shape[0] < 4:
                continue

            score = self.box_score_fast(pred, points.reshape(-1, 2))
            if self.box_thresh > score:
                continue

            if points.shape[0] > 2:
                box = self.unclip(points, self.unclip_ratio)
                if len(box) > 1:
                    continue
            else:
                continue
            box = box.reshape(-1, 2)

            _, sside = self.get_mini_boxes(box.reshape((-1, 1, 2)))
            if sside < self.min_size + 2:
                continue

            box = np.array(box)
            box[:, 0] = np.clip(
                np.round(box[:, 0] / width * dest_width), 0, dest_width)
            box[:, 1] = np.clip(
                np.round(box[:, 1] / height * dest_height), 0, dest_height)
            boxes.append(box.tolist())
            scores.append(score)
        return boxes, scores

L
LDOUBLEV 已提交
104 105 106 107 108 109 110 111 112
    def boxes_from_bitmap(self, pred, _bitmap, dest_width, dest_height):
        '''
        _bitmap: single map with shape (1, H, W),
                whose values are binarized as {0, 1}
        '''

        bitmap = _bitmap
        height, width = bitmap.shape

L
LDOUBLEV 已提交
113 114
        outs = cv2.findContours((bitmap * 255).astype(np.uint8), cv2.RETR_LIST,
                                cv2.CHAIN_APPROX_SIMPLE)
T
tink2123 已提交
115 116 117 118
        if len(outs) == 3:
            img, contours, _ = outs[0], outs[1], outs[2]
        elif len(outs) == 2:
            contours, _ = outs[0], outs[1]
L
LDOUBLEV 已提交
119 120 121

        num_contours = min(len(contours), self.max_candidates)

W
WenmuZhou 已提交
122 123
        boxes = []
        scores = []
L
LDOUBLEV 已提交
124 125 126 127 128 129
        for index in range(num_contours):
            contour = contours[index]
            points, sside = self.get_mini_boxes(contour)
            if sside < self.min_size:
                continue
            points = np.array(points)
littletomatodonkey's avatar
littletomatodonkey 已提交
130 131 132 133
            if self.score_mode == "fast":
                score = self.box_score_fast(pred, points.reshape(-1, 2))
            else:
                score = self.box_score_slow(pred, contour)
L
LDOUBLEV 已提交
134 135 136
            if self.box_thresh > score:
                continue

W
wangjingyeye 已提交
137
            box = self.unclip(points, self.unclip_ratio).reshape(-1, 1, 2)
L
LDOUBLEV 已提交
138 139 140 141 142 143 144 145 146
            box, sside = self.get_mini_boxes(box)
            if sside < self.min_size + 2:
                continue
            box = np.array(box)

            box[:, 0] = np.clip(
                np.round(box[:, 0] / width * dest_width), 0, dest_width)
            box[:, 1] = np.clip(
                np.round(box[:, 1] / height * dest_height), 0, dest_height)
W
WenmuZhou 已提交
147 148 149
            boxes.append(box.astype(np.int16))
            scores.append(score)
        return np.array(boxes, dtype=np.int16), scores
L
LDOUBLEV 已提交
150

W
wangjingyeye 已提交
151
    def unclip(self, box, unclip_ratio):
L
LDOUBLEV 已提交
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
        poly = Polygon(box)
        distance = poly.area * unclip_ratio / poly.length
        offset = pyclipper.PyclipperOffset()
        offset.AddPath(box, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON)
        expanded = np.array(offset.Execute(distance))
        return expanded

    def get_mini_boxes(self, contour):
        bounding_box = cv2.minAreaRect(contour)
        points = sorted(list(cv2.boxPoints(bounding_box)), key=lambda x: x[0])

        index_1, index_2, index_3, index_4 = 0, 1, 2, 3
        if points[1][1] > points[0][1]:
            index_1 = 0
            index_4 = 1
        else:
            index_1 = 1
            index_4 = 0
        if points[3][1] > points[2][1]:
            index_2 = 2
            index_3 = 3
        else:
            index_2 = 3
            index_3 = 2

        box = [
            points[index_1], points[index_2], points[index_3], points[index_4]
        ]
        return box, min(bounding_box[1])

    def box_score_fast(self, bitmap, _box):
littletomatodonkey's avatar
littletomatodonkey 已提交
183 184 185
        '''
        box_score_fast: use bbox mean score as the mean score
        '''
L
LDOUBLEV 已提交
186 187 188 189 190 191 192 193 194 195 196 197 198
        h, w = bitmap.shape[:2]
        box = _box.copy()
        xmin = np.clip(np.floor(box[:, 0].min()).astype(np.int), 0, w - 1)
        xmax = np.clip(np.ceil(box[:, 0].max()).astype(np.int), 0, w - 1)
        ymin = np.clip(np.floor(box[:, 1].min()).astype(np.int), 0, h - 1)
        ymax = np.clip(np.ceil(box[:, 1].max()).astype(np.int), 0, h - 1)

        mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8)
        box[:, 0] = box[:, 0] - xmin
        box[:, 1] = box[:, 1] - ymin
        cv2.fillPoly(mask, box.reshape(1, -1, 2).astype(np.int32), 1)
        return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0]

littletomatodonkey's avatar
littletomatodonkey 已提交
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
    def box_score_slow(self, bitmap, contour):
        '''
        box_score_slow: use polyon mean score as the mean score
        '''
        h, w = bitmap.shape[:2]
        contour = contour.copy()
        contour = np.reshape(contour, (-1, 2))

        xmin = np.clip(np.min(contour[:, 0]), 0, w - 1)
        xmax = np.clip(np.max(contour[:, 0]), 0, w - 1)
        ymin = np.clip(np.min(contour[:, 1]), 0, h - 1)
        ymax = np.clip(np.max(contour[:, 1]), 0, h - 1)

        mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8)

        contour[:, 0] = contour[:, 0] - xmin
        contour[:, 1] = contour[:, 1] - ymin

        cv2.fillPoly(mask, contour.reshape(1, -1, 2).astype(np.int32), 1)
        return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0]

W
WenmuZhou 已提交
220 221
    def __call__(self, outs_dict, shape_list):
        pred = outs_dict['maps']
W
WenmuZhou 已提交
222 223 224
        if isinstance(pred, paddle.Tensor):
            pred = pred.numpy()
        pred = pred[:, 0, :, :]
L
LDOUBLEV 已提交
225 226 227 228
        segmentation = pred > self.thresh

        boxes_batch = []
        for batch_index in range(pred.shape[0]):
L
LDOUBLEV 已提交
229
            src_h, src_w, ratio_h, ratio_w = shape_list[batch_index]
230 231 232 233 234 235
            if self.dilation_kernel is not None:
                mask = cv2.dilate(
                    np.array(segmentation[batch_index]).astype(np.uint8),
                    self.dilation_kernel)
            else:
                mask = segmentation[batch_index]
W
wangjingyeye 已提交
236
            if self.use_polygon is True:
W
wangjingyeye 已提交
237 238 239 240 241
                boxes, scores = self.polygons_from_bitmap(pred[batch_index],
                                                          mask, src_w, src_h)
            else:
                boxes, scores = self.boxes_from_bitmap(pred[batch_index], mask,
                                                       src_w, src_h)
L
LDOUBLEV 已提交
242

W
WenmuZhou 已提交
243
            boxes_batch.append({'points': boxes})
L
LDOUBLEV 已提交
244
        return boxes_batch
L
fix bug  
LDOUBLEV 已提交
245 246


L
LDOUBLEV 已提交
247
class DistillationDBPostProcess(object):
L
LDOUBLEV 已提交
248 249
    def __init__(self,
                 model_name=["student"],
L
fix bug  
LDOUBLEV 已提交
250 251
                 key=None,
                 thresh=0.3,
L
LDOUBLEV 已提交
252
                 box_thresh=0.6,
L
fix bug  
LDOUBLEV 已提交
253
                 max_candidates=1000,
L
LDOUBLEV 已提交
254
                 unclip_ratio=1.5,
L
fix bug  
LDOUBLEV 已提交
255 256
                 use_dilation=False,
                 score_mode="fast",
W
wangjingyeye 已提交
257
                 use_polygon=False,
L
fix bug  
LDOUBLEV 已提交
258 259 260
                 **kwargs):
        self.model_name = model_name
        self.key = key
L
LDOUBLEV 已提交
261 262 263 264 265 266
        self.post_process = DBPostProcess(
            thresh=thresh,
            box_thresh=box_thresh,
            max_candidates=max_candidates,
            unclip_ratio=unclip_ratio,
            use_dilation=use_dilation,
W
wangjingyeye 已提交
267 268
            score_mode=score_mode,
            use_polygon=use_polygon)
L
fix bug  
LDOUBLEV 已提交
269

L
LDOUBLEV 已提交
270
    def __call__(self, predicts, shape_list):
L
fix bug  
LDOUBLEV 已提交
271
        results = {}
L
LDOUBLEV 已提交
272 273
        for k in self.model_name:
            results[k] = self.post_process(predicts[k], shape_list=shape_list)
L
fix bug  
LDOUBLEV 已提交
274
        return results