det_local_server.py 2.8 KB
Newer Older
W
wangjiawei04 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from paddle_serving_client import Client
import cv2
import sys
import numpy as np
import os
from paddle_serving_client import Client
from paddle_serving_app.reader import Sequential, ResizeByFactor
from paddle_serving_app.reader import Div, Normalize, Transpose
from paddle_serving_app.reader import DBPostProcess, FilterBoxes
W
wangjiawei04 已提交
24 25 26 27
if sys.argv[1] == 'gpu':
    from paddle_serving_server_gpu.web_service import WebService
elif sys.argv[1] == 'cpu'
    from paddle_serving_server.web_service import WebService
W
wangjiawei04 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
import time
import re
import base64


class OCRService(WebService):
    def init_det(self):
        self.det_preprocess = Sequential([
            ResizeByFactor(32, 960), Div(255),
            Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), Transpose(
                (2, 0, 1))
        ])
        self.filter_func = FilterBoxes(10, 10)
        self.post_func = DBPostProcess({
            "thresh": 0.3,
            "box_thresh": 0.5,
            "max_candidates": 1000,
            "unclip_ratio": 1.5,
            "min_size": 3
        })

    def preprocess(self, feed=[], fetch=[]):
        data = base64.b64decode(feed[0]["image"].encode('utf8'))
        data = np.fromstring(data, np.uint8)
        im = cv2.imdecode(data, cv2.IMREAD_COLOR)
        self.ori_h, self.ori_w, _ = im.shape
        det_img = self.det_preprocess(im)
        _, self.new_h, self.new_w = det_img.shape
        return {"image": det_img[np.newaxis, :].copy()}, ["concat_1.tmp_0"]

    def postprocess(self, feed={}, fetch=[], fetch_map=None):
        det_out = fetch_map["concat_1.tmp_0"]
        ratio_list = [
            float(self.new_h) / self.ori_h, float(self.new_w) / self.ori_w
        ]
        dt_boxes_list = self.post_func(det_out, [ratio_list])
        dt_boxes = self.filter_func(dt_boxes_list[0], [self.ori_h, self.ori_w])
        return {"dt_boxes": dt_boxes.tolist()}


ocr_service = OCRService(name="ocr")
ocr_service.load_model_config("ocr_det_model")
W
wangjiawei04 已提交
70 71 72 73 74
if sys.argv[1] == 'gpu':
    ocr_service.set_gpus("0")
    ocr_service.prepare_server(workdir="workdir", port=9292, device="gpu", gpuid=0)
elif sys.argv[1] == 'cpu':
    ocr_service.prepare_server(workdir="workdir", port=9292)
W
wangjiawei04 已提交
75 76 77
ocr_service.init_det()
ocr_service.run_debugger_service()
ocr_service.run_web_service()