test_train_inference_python.sh 17.9 KB
Newer Older
M
MissPenguin 已提交
1
#!/bin/bash
L
fix bug  
LDOUBLEV 已提交
2
source test_tipc/common_func.sh
M
MissPenguin 已提交
3 4

FILENAME=$1
L
rename  
LDOUBLEV 已提交
5
# MODE be one of ['lite_train_lite_infer' 'lite_train_whole_infer' 'whole_train_whole_infer', 'whole_infer', 'klquant_whole_infer']
L
LDOUBLEV 已提交
6 7
MODE=$2

L
LDOUBLEV 已提交
8
dataline=$(awk 'NR==1, NR==51{print}'  $FILENAME)
M
MissPenguin 已提交
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61

# parser params
IFS=$'\n'
lines=(${dataline})

# The training params
model_name=$(func_parser_value "${lines[1]}")
python=$(func_parser_value "${lines[2]}")
gpu_list=$(func_parser_value "${lines[3]}")
train_use_gpu_key=$(func_parser_key "${lines[4]}")
train_use_gpu_value=$(func_parser_value "${lines[4]}")
autocast_list=$(func_parser_value "${lines[5]}")
autocast_key=$(func_parser_key "${lines[5]}")
epoch_key=$(func_parser_key "${lines[6]}")
epoch_num=$(func_parser_params "${lines[6]}")
save_model_key=$(func_parser_key "${lines[7]}")
train_batch_key=$(func_parser_key "${lines[8]}")
train_batch_value=$(func_parser_params "${lines[8]}")
pretrain_model_key=$(func_parser_key "${lines[9]}")
pretrain_model_value=$(func_parser_value "${lines[9]}")
train_model_name=$(func_parser_value "${lines[10]}")
train_infer_img_dir=$(func_parser_value "${lines[11]}")
train_param_key1=$(func_parser_key "${lines[12]}")
train_param_value1=$(func_parser_value "${lines[12]}")

trainer_list=$(func_parser_value "${lines[14]}")
trainer_norm=$(func_parser_key "${lines[15]}")
norm_trainer=$(func_parser_value "${lines[15]}")
pact_key=$(func_parser_key "${lines[16]}")
pact_trainer=$(func_parser_value "${lines[16]}")
fpgm_key=$(func_parser_key "${lines[17]}")
fpgm_trainer=$(func_parser_value "${lines[17]}")
distill_key=$(func_parser_key "${lines[18]}")
distill_trainer=$(func_parser_value "${lines[18]}")
trainer_key1=$(func_parser_key "${lines[19]}")
trainer_value1=$(func_parser_value "${lines[19]}")
trainer_key2=$(func_parser_key "${lines[20]}")
trainer_value2=$(func_parser_value "${lines[20]}")

eval_py=$(func_parser_value "${lines[23]}")
eval_key1=$(func_parser_key "${lines[24]}")
eval_value1=$(func_parser_value "${lines[24]}")

save_infer_key=$(func_parser_key "${lines[27]}")
export_weight=$(func_parser_key "${lines[28]}")
norm_export=$(func_parser_value "${lines[29]}")
pact_export=$(func_parser_value "${lines[30]}")
fpgm_export=$(func_parser_value "${lines[31]}")
distill_export=$(func_parser_value "${lines[32]}")
export_key1=$(func_parser_key "${lines[33]}")
export_value1=$(func_parser_value "${lines[33]}")
export_key2=$(func_parser_key "${lines[34]}")
export_value2=$(func_parser_value "${lines[34]}")
L
LDOUBLEV 已提交
62
inference_dir=$(func_parser_value "${lines[35]}")
M
MissPenguin 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90

# parser inference model 
infer_model_dir_list=$(func_parser_value "${lines[36]}")
infer_export_list=$(func_parser_value "${lines[37]}")
infer_is_quant=$(func_parser_value "${lines[38]}")
# parser inference 
inference_py=$(func_parser_value "${lines[39]}")
use_gpu_key=$(func_parser_key "${lines[40]}")
use_gpu_list=$(func_parser_value "${lines[40]}")
use_mkldnn_key=$(func_parser_key "${lines[41]}")
use_mkldnn_list=$(func_parser_value "${lines[41]}")
cpu_threads_key=$(func_parser_key "${lines[42]}")
cpu_threads_list=$(func_parser_value "${lines[42]}")
batch_size_key=$(func_parser_key "${lines[43]}")
batch_size_list=$(func_parser_value "${lines[43]}")
use_trt_key=$(func_parser_key "${lines[44]}")
use_trt_list=$(func_parser_value "${lines[44]}")
precision_key=$(func_parser_key "${lines[45]}")
precision_list=$(func_parser_value "${lines[45]}")
infer_model_key=$(func_parser_key "${lines[46]}")
image_dir_key=$(func_parser_key "${lines[47]}")
infer_img_dir=$(func_parser_value "${lines[47]}")
save_log_key=$(func_parser_key "${lines[48]}")
benchmark_key=$(func_parser_key "${lines[49]}")
benchmark_value=$(func_parser_value "${lines[49]}")
infer_key1=$(func_parser_key "${lines[50]}")
infer_value1=$(func_parser_value "${lines[50]}")

L
LDOUBLEV 已提交
91
# parser klquant_infer
L
rename  
LDOUBLEV 已提交
92
if [ ${MODE} = "klquant_whole_infer" ]; then
L
LDOUBLEV 已提交
93
    dataline=$(awk 'NR==1 NR==17{print}'  $FILENAME)
L
LDOUBLEV 已提交
94
    lines=(${dataline})
L
LDOUBLEV 已提交
95 96
    model_name=$(func_parser_value "${lines[1]}")
    python=$(func_parser_value "${lines[2]}")
L
LDOUBLEV 已提交
97
    # parser inference model 
L
LDOUBLEV 已提交
98 99 100
    infer_model_dir_list=$(func_parser_value "${lines[3]}")
    infer_export_list=$(func_parser_value "${lines[4]}")
    infer_is_quant=$(func_parser_value "${lines[5]}")
L
LDOUBLEV 已提交
101
    # parser inference 
L
LDOUBLEV 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
    inference_py=$(func_parser_value "${lines[6]}")
    use_gpu_key=$(func_parser_key "${lines[7]}")
    use_gpu_list=$(func_parser_value "${lines[7]}")
    use_mkldnn_key=$(func_parser_key "${lines[8]}")
    use_mkldnn_list=$(func_parser_value "${lines[8]}")
    cpu_threads_key=$(func_parser_key "${lines[9]}")
    cpu_threads_list=$(func_parser_value "${lines[9]}")
    batch_size_key=$(func_parser_key "${lines[10]}")
    batch_size_list=$(func_parser_value "${lines[10]}")
    use_trt_key=$(func_parser_key "${lines[11]}")
    use_trt_list=$(func_parser_value "${lines[11]}")
    precision_key=$(func_parser_key "${lines[12]}")
    precision_list=$(func_parser_value "${lines[12]}")
    infer_model_key=$(func_parser_key "${lines[13]}")
    image_dir_key=$(func_parser_key "${lines[14]}")
    infer_img_dir=$(func_parser_value "${lines[14]}")
    save_log_key=$(func_parser_key "${lines[15]}")
    benchmark_key=$(func_parser_key "${lines[16]}")
    benchmark_value=$(func_parser_value "${lines[16]}")
    infer_key1=$(func_parser_key "${lines[17]}")
    infer_value1=$(func_parser_value "${lines[17]}")
L
LDOUBLEV 已提交
123
fi
M
MissPenguin 已提交
124

L
rename  
LDOUBLEV 已提交
125
LOG_PATH="./test_tipc/output"
M
MissPenguin 已提交
126
mkdir -p ${LOG_PATH}
L
LDOUBLEV 已提交
127
status_log="${LOG_PATH}/results_python.log"
M
MissPenguin 已提交
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146


function func_inference(){
    IFS='|'
    _python=$1
    _script=$2
    _model_dir=$3
    _log_path=$4
    _img_dir=$5
    _flag_quant=$6
    # inference 
    for use_gpu in ${use_gpu_list[*]}; do
        if [ ${use_gpu} = "False" ] || [ ${use_gpu} = "cpu" ]; then
            for use_mkldnn in ${use_mkldnn_list[*]}; do
                if [ ${use_mkldnn} = "False" ] && [ ${_flag_quant} = "True" ]; then
                    continue
                fi
                for threads in ${cpu_threads_list[*]}; do
                    for batch_size in ${batch_size_list[*]}; do
L
LDOUBLEV 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
                        for precision in ${precision_list[*]}; do
                            if [ ${use_mkldnn} = "False" ] && [ ${precision} = "fp16" ]; then
                                continue
                            fi # skip when enable fp16 but disable mkldnn
                            if [ ${_flag_quant} = "True" ] && [ ${precision} != "int8" ]; then
                                continue
                            fi # skip when quant model inference but precision is not int8
                            set_precision=$(func_set_params "${precision_key}" "${precision}")
                            
                            _save_log_path="${_log_path}/python_infer_cpu_usemkldnn_${use_mkldnn}_threads_${threads}_precision_${precision}_batchsize_${batch_size}.log"
                            set_infer_data=$(func_set_params "${image_dir_key}" "${_img_dir}")
                            set_benchmark=$(func_set_params "${benchmark_key}" "${benchmark_value}")
                            set_batchsize=$(func_set_params "${batch_size_key}" "${batch_size}")
                            set_cpu_threads=$(func_set_params "${cpu_threads_key}" "${threads}")
                            set_model_dir=$(func_set_params "${infer_model_key}" "${_model_dir}")
                            set_infer_params1=$(func_set_params "${infer_key1}" "${infer_value1}")
                            command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${use_mkldnn_key}=${use_mkldnn} ${set_cpu_threads} ${set_model_dir} ${set_batchsize} ${set_infer_data} ${set_benchmark} ${set_precision} ${set_infer_params1} > ${_save_log_path} 2>&1 "
                            eval $command
                            last_status=${PIPESTATUS[0]}
                            eval "cat ${_save_log_path}"
                            status_check $last_status "${command}" "${status_log}"
                        done
M
MissPenguin 已提交
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
                    done
                done
            done
        elif [ ${use_gpu} = "True" ] || [ ${use_gpu} = "gpu" ]; then
            for use_trt in ${use_trt_list[*]}; do
                for precision in ${precision_list[*]}; do
                    if [[ ${_flag_quant} = "False" ]] && [[ ${precision} =~ "int8" ]]; then
                        continue
                    fi 
                    if [[ ${precision} =~ "fp16" || ${precision} =~ "int8" ]] && [ ${use_trt} = "False" ]; then
                        continue
                    fi
                    if [[ ${use_trt} = "False" || ${precision} =~ "int8" ]] && [ ${_flag_quant} = "True" ]; then
                        continue
                    fi
                    for batch_size in ${batch_size_list[*]}; do
L
LDOUBLEV 已提交
185
                        _save_log_path="${_log_path}/python_infer_gpu_usetrt_${use_trt}_precision_${precision}_batchsize_${batch_size}.log"
M
MissPenguin 已提交
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
                        set_infer_data=$(func_set_params "${image_dir_key}" "${_img_dir}")
                        set_benchmark=$(func_set_params "${benchmark_key}" "${benchmark_value}")
                        set_batchsize=$(func_set_params "${batch_size_key}" "${batch_size}")
                        set_tensorrt=$(func_set_params "${use_trt_key}" "${use_trt}")
                        set_precision=$(func_set_params "${precision_key}" "${precision}")
                        set_model_dir=$(func_set_params "${infer_model_key}" "${_model_dir}")
                        set_infer_params1=$(func_set_params "${infer_key1}" "${infer_value1}")
                        command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${set_tensorrt} ${set_precision} ${set_model_dir} ${set_batchsize} ${set_infer_data} ${set_benchmark} ${set_infer_params1} > ${_save_log_path} 2>&1 "
                        eval $command
                        last_status=${PIPESTATUS[0]}
                        eval "cat ${_save_log_path}"
                        status_check $last_status "${command}" "${status_log}"
                        
                    done
                done
            done
        else
            echo "Does not support hardware other than CPU and GPU Currently!"
        fi
    done
}

L
rename  
LDOUBLEV 已提交
208
if [ ${MODE} = "whole_infer" ] || [ ${MODE} = "klquant_whole_infer" ]; then
L
LDOUBLEV 已提交
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
    GPUID=$3
    if [ ${#GPUID} -le 0 ];then
        env=" "
    else
        env="export CUDA_VISIBLE_DEVICES=${GPUID}"
    fi
    # set CUDA_VISIBLE_DEVICES
    eval $env
    export Count=0
    IFS="|"
    infer_run_exports=(${infer_export_list})
    infer_quant_flag=(${infer_is_quant})
    for infer_model in ${infer_model_dir_list[*]}; do
        # run export
        if [ ${infer_run_exports[Count]} != "null" ];then
            save_infer_dir=$(dirname $infer_model)
            set_export_weight=$(func_set_params "${export_weight}" "${infer_model}")
            set_save_infer_key=$(func_set_params "${save_infer_key}" "${save_infer_dir}")
            export_cmd="${python} ${infer_run_exports[Count]} ${set_export_weight} ${set_save_infer_key}"
            echo ${infer_run_exports[Count]} 
T
tink2123 已提交
229
            echo $export_cmd
L
LDOUBLEV 已提交
230 231 232 233 234 235 236 237
            eval $export_cmd
            status_export=$?
            status_check $status_export "${export_cmd}" "${status_log}"
        else
            save_infer_dir=${infer_model}
        fi
        #run inference
        is_quant=${infer_quant_flag[Count]}
L
LDOUBLEV 已提交
238 239 240
        if [ ${MODE} = "klquant_infer" ]; then
            is_quant="True"
        fi
L
LDOUBLEV 已提交
241 242 243
        func_inference "${python}" "${inference_py}" "${save_infer_dir}" "${LOG_PATH}" "${infer_img_dir}" ${is_quant}
        Count=$(($Count + 1))
    done
M
MissPenguin 已提交
244
else
L
LDOUBLEV 已提交
245 246 247 248
    IFS="|"
    export Count=0
    USE_GPU_KEY=(${train_use_gpu_value})
    for gpu in ${gpu_list[*]}; do
S
stephon 已提交
249
        train_use_gpu=${USE_GPU_KEY[Count]}
L
LDOUBLEV 已提交
250
        Count=$(($Count + 1))
B
Bin Lu 已提交
251
        ips=""
L
LDOUBLEV 已提交
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
        if [ ${gpu} = "-1" ];then
            env=""
        elif [ ${#gpu} -le 1 ];then
            env="export CUDA_VISIBLE_DEVICES=${gpu}"
            eval ${env}
        elif [ ${#gpu} -le 15 ];then
            IFS=","
            array=(${gpu})
            env="export CUDA_VISIBLE_DEVICES=${array[0]}"
            IFS="|"
        else
            IFS=";"
            array=(${gpu})
            ips=${array[0]}
            gpu=${array[1]}
            IFS="|"
            env=" "
        fi
        for autocast in ${autocast_list[*]}; do 
S
stephon 已提交
271
            if [ ${autocast} = "amp" ]; then
B
Bin Lu 已提交
272
                set_amp_config="Global.use_amp=True Global.scale_loss=1024.0 Global.use_dynamic_loss_scaling=True"
S
stephon 已提交
273 274 275
            else
                set_amp_config=" "
            fi          
L
LDOUBLEV 已提交
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
            for trainer in ${trainer_list[*]}; do 
                flag_quant=False
                if [ ${trainer} = ${pact_key} ]; then
                    run_train=${pact_trainer}
                    run_export=${pact_export}
                    flag_quant=True
                elif [ ${trainer} = "${fpgm_key}" ]; then
                    run_train=${fpgm_trainer}
                    run_export=${fpgm_export}
                elif [ ${trainer} = "${distill_key}" ]; then
                    run_train=${distill_trainer}
                    run_export=${distill_export}
                elif [ ${trainer} = ${trainer_key1} ]; then
                    run_train=${trainer_value1}
                    run_export=${export_value1}
                elif [[ ${trainer} = ${trainer_key2} ]]; then
                    run_train=${trainer_value2}
                    run_export=${export_value2}
                else
                    run_train=${norm_trainer}
                    run_export=${norm_export}
                fi

                if [ ${run_train} = "null" ]; then
                    continue
                fi
                set_autocast=$(func_set_params "${autocast_key}" "${autocast}")
                set_epoch=$(func_set_params "${epoch_key}" "${epoch_num}")
                set_pretrain=$(func_set_params "${pretrain_model_key}" "${pretrain_model_value}")
                set_batchsize=$(func_set_params "${train_batch_key}" "${train_batch_value}")
                set_train_params1=$(func_set_params "${train_param_key1}" "${train_param_value1}")
S
stephon 已提交
307
                set_use_gpu=$(func_set_params "${train_use_gpu_key}" "${train_use_gpu}")
S
stephon 已提交
308 309
                if [ ${#ips} -le 26 ];then
                    save_log="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}"
S
stephon 已提交
310
                    nodes=1
S
stephon 已提交
311 312 313 314 315 316 317 318
                else
                    IFS=","
                    ips_array=(${ips})
                    IFS="|"
                    nodes=${#ips_array[@]}
                    save_log="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}_nodes_${nodes}"
                fi

L
LDOUBLEV 已提交
319
                # load pretrain from norm training if current trainer is pact or fpgm trainer
S
stephon 已提交
320
                if ([ ${trainer} = ${pact_key} ] || [ ${trainer} = ${fpgm_key} ]) && [ ${nodes} -le 1 ]; then
L
LDOUBLEV 已提交
321 322
                    set_pretrain="${load_norm_train_model}"
                fi
M
MissPenguin 已提交
323

L
LDOUBLEV 已提交
324 325
                set_save_model=$(func_set_params "${save_model_key}" "${save_log}")
                if [ ${#gpu} -le 2 ];then  # train with cpu or single gpu
S
stephon 已提交
326
                    cmd="${python} ${run_train} ${set_use_gpu}  ${set_save_model} ${set_epoch} ${set_pretrain} ${set_autocast} ${set_batchsize} ${set_train_params1} ${set_amp_config} "
B
Bin Lu 已提交
327 328
                elif [ ${#ips} -le 26 ];then  # train with multi-gpu
                    cmd="${python} -m paddle.distributed.launch --gpus=${gpu} ${run_train} ${set_use_gpu} ${set_save_model} ${set_epoch} ${set_pretrain} ${set_autocast} ${set_batchsize} ${set_train_params1} ${set_amp_config}"
L
LDOUBLEV 已提交
329
                else     # train with multi-machine
S
stephon 已提交
330
                    cmd="${python} -m paddle.distributed.launch --ips=${ips} --gpus=${gpu} ${run_train} ${set_use_gpu} ${set_save_model} ${set_pretrain} ${set_epoch} ${set_autocast} ${set_batchsize} ${set_train_params1} ${set_amp_config}"
L
LDOUBLEV 已提交
331 332 333 334 335 336 337 338
                fi
                # run train
                eval "unset CUDA_VISIBLE_DEVICES"
                eval $cmd
                status_check $? "${cmd}" "${status_log}"

                set_eval_pretrain=$(func_set_params "${pretrain_model_key}" "${save_log}/${train_model_name}")
                # save norm trained models to set pretrain for pact training and fpgm training 
T
tink2123 已提交
339
                if [ ${trainer} = ${trainer_norm} ] && [ ${nodes} -le 1 ]; then
L
LDOUBLEV 已提交
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
                    load_norm_train_model=${set_eval_pretrain}
                fi
                # run eval 
                if [ ${eval_py} != "null" ]; then
                    set_eval_params1=$(func_set_params "${eval_key1}" "${eval_value1}")
                    eval_cmd="${python} ${eval_py} ${set_eval_pretrain} ${set_use_gpu} ${set_eval_params1}" 
                    eval $eval_cmd
                    status_check $? "${eval_cmd}" "${status_log}"
                fi
                # run export model
                if [ ${run_export} != "null" ]; then 
                    # run export model
                    save_infer_path="${save_log}"
                    set_export_weight=$(func_set_params "${export_weight}" "${save_log}/${train_model_name}")
                    set_save_infer_key=$(func_set_params "${save_infer_key}" "${save_infer_path}")
                    export_cmd="${python} ${run_export} ${set_export_weight} ${set_save_infer_key}"
                    eval $export_cmd
                    status_check $? "${export_cmd}" "${status_log}"

                    #run inference
                    eval $env
                    save_infer_path="${save_log}"
T
tink2123 已提交
362
                    if [[ ${inference_dir} != "null" ]] && [[ ${inference_dir} != '##' ]]; then
L
LDOUBLEV 已提交
363 364 365 366 367 368
                        infer_model_dir="${save_infer_path}/${inference_dir}"
                    else
                        infer_model_dir=${save_infer_path}
                    fi
                    func_inference "${python}" "${inference_py}" "${infer_model_dir}" "${LOG_PATH}" "${train_infer_img_dir}" "${flag_quant}"
                    
L
LDOUBLEV 已提交
369 370 371 372 373 374
                    eval "unset CUDA_VISIBLE_DEVICES"
                fi
            done  # done with:    for trainer in ${trainer_list[*]}; do 
        done      # done with:    for autocast in ${autocast_list[*]}; do 
    done          # done with:    for gpu in ${gpu_list[*]}; do
fi  # end if [ ${MODE} = "infer" ]; then
M
MissPenguin 已提交
375