rec_ctc_head.py 2.9 KB
Newer Older
W
WenmuZhou 已提交
1
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
L
LDOUBLEV 已提交
2
#
W
WenmuZhou 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
L
LDOUBLEV 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
W
WenmuZhou 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
L
LDOUBLEV 已提交
14 15 16 17 18 19 20 21

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import math

import paddle
W
WenmuZhou 已提交
22
from paddle import ParamAttr, nn
23
from paddle.nn import functional as F
W
WenmuZhou 已提交
24 25


littletomatodonkey's avatar
littletomatodonkey 已提交
26
def get_para_bias_attr(l2_decay, k):
W
WenmuZhou 已提交
27
    regularizer = paddle.regularizer.L2Decay(l2_decay)
W
WenmuZhou 已提交
28 29
    stdv = 1.0 / math.sqrt(k * 1.0)
    initializer = nn.initializer.Uniform(-stdv, stdv)
littletomatodonkey's avatar
littletomatodonkey 已提交
30 31
    weight_attr = ParamAttr(regularizer=regularizer, initializer=initializer)
    bias_attr = ParamAttr(regularizer=regularizer, initializer=initializer)
W
WenmuZhou 已提交
32 33
    return [weight_attr, bias_attr]

W
WenmuZhou 已提交
34

D
dyning 已提交
35
class CTCHead(nn.Layer):
36 37 38 39 40
    def __init__(self,
                 in_channels,
                 out_channels,
                 fc_decay=0.0004,
                 mid_channels=None,
41
                 return_feats=False,
42
                 **kwargs):
D
dyning 已提交
43
        super(CTCHead, self).__init__()
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
        if mid_channels is None:
            weight_attr, bias_attr = get_para_bias_attr(
                l2_decay=fc_decay, k=in_channels)
            self.fc = nn.Linear(
                in_channels,
                out_channels,
                weight_attr=weight_attr,
                bias_attr=bias_attr)
        else:
            weight_attr1, bias_attr1 = get_para_bias_attr(
                l2_decay=fc_decay, k=in_channels)
            self.fc1 = nn.Linear(
                in_channels,
                mid_channels,
                weight_attr=weight_attr1,
                bias_attr=bias_attr1)

            weight_attr2, bias_attr2 = get_para_bias_attr(
                l2_decay=fc_decay, k=mid_channels)
            self.fc2 = nn.Linear(
                mid_channels,
                out_channels,
                weight_attr=weight_attr2,
                bias_attr=bias_attr2)
W
WenmuZhou 已提交
68
        self.out_channels = out_channels
69
        self.mid_channels = mid_channels
70
        self.return_feats = return_feats
W
WenmuZhou 已提交
71

M
refine  
MissPenguin 已提交
72
    def forward(self, x, targets=None):
73 74 75
        if self.mid_channels is None:
            predicts = self.fc(x)
        else:
76 77 78 79 80 81 82 83
            x = self.fc1(x)
            predicts = self.fc2(x)

        if self.return_feats:
            result = (x, predicts)
        else:
            result = predicts

84 85
        if not self.training:
            predicts = F.softmax(predicts, axis=2)
86 87 88
            result = predicts

        return result