export_model.py 7.1 KB
Newer Older
B
baiyfbupt 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import sys

__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '..', '..', '..')))
sys.path.append(
    os.path.abspath(os.path.join(__dir__, '..', '..', '..', 'tools')))

import argparse

import paddle
from paddle.jit import to_static

from ppocr.modeling.architectures import build_model
from ppocr.postprocess import build_post_process
31
from ppocr.utils.save_load import load_model
B
baiyfbupt 已提交
32 33 34 35 36 37
from ppocr.utils.logging import get_logger
from tools.program import load_config, merge_config, ArgsParser
from ppocr.metrics import build_metric
import tools.program as program
from paddleslim.dygraph.quant import QAT
from ppocr.data import build_dataloader
littletomatodonkey's avatar
littletomatodonkey 已提交
38
from tools.export_model import export_single_model
39 40


B
baiyfbupt 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
def main():
    ############################################################################################################
    # 1. quantization configs
    ############################################################################################################
    quant_config = {
        # weight preprocess type, default is None and no preprocessing is performed. 
        'weight_preprocess_type': None,
        # activation preprocess type, default is None and no preprocessing is performed.
        'activation_preprocess_type': None,
        # weight quantize type, default is 'channel_wise_abs_max'
        'weight_quantize_type': 'channel_wise_abs_max',
        # activation quantize type, default is 'moving_average_abs_max'
        'activation_quantize_type': 'moving_average_abs_max',
        # weight quantize bit num, default is 8
        'weight_bits': 8,
        # activation quantize bit num, default is 8
        'activation_bits': 8,
        # data type after quantization, such as 'uint8', 'int8', etc. default is 'int8'
        'dtype': 'int8',
        # window size for 'range_abs_max' quantization. default is 10000
        'window_size': 10000,
        # The decay coefficient of moving average, default is 0.9
        'moving_rate': 0.9,
        # for dygraph quantization, layers of type in quantizable_layer_type will be quantized
        'quantizable_layer_type': ['Conv2D', 'Linear'],
    }
    FLAGS = ArgsParser().parse_args()
    config = load_config(FLAGS.config)
文幕地方's avatar
文幕地方 已提交
69
    config = merge_config(config, FLAGS.opt)
B
baiyfbupt 已提交
70 71 72 73 74 75 76 77 78
    logger = get_logger()
    # build post process

    post_process_class = build_post_process(config['PostProcess'],
                                            config['Global'])

    # build model
    if hasattr(post_process_class, 'character'):
        char_num = len(getattr(post_process_class, 'character'))
79 80 81
        if config['Architecture']["algorithm"] in ["Distillation",
                                                   ]:  # distillation model
            for key in config['Architecture']["Models"]:
littletomatodonkey's avatar
littletomatodonkey 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
                if config['Architecture']['Models'][key]['Head'][
                        'name'] == 'MultiHead':  # for multi head
                    if config['PostProcess'][
                            'name'] == 'DistillationSARLabelDecode':
                        char_num = char_num - 2
                    # update SARLoss params
                    assert list(config['Loss']['loss_config_list'][-1].keys())[
                        0] == 'DistillationSARLoss'
                    config['Loss']['loss_config_list'][-1][
                        'DistillationSARLoss']['ignore_index'] = char_num + 1
                    out_channels_list = {}
                    out_channels_list['CTCLabelDecode'] = char_num
                    out_channels_list['SARLabelDecode'] = char_num + 2
                    config['Architecture']['Models'][key]['Head'][
                        'out_channels_list'] = out_channels_list
                else:
                    config['Architecture']["Models"][key]["Head"][
                        'out_channels'] = char_num
        elif config['Architecture']['Head'][
                'name'] == 'MultiHead':  # for multi head
            if config['PostProcess']['name'] == 'SARLabelDecode':
                char_num = char_num - 2
            # update SARLoss params
            assert list(config['Loss']['loss_config_list'][1].keys())[
                0] == 'SARLoss'
            if config['Loss']['loss_config_list'][1]['SARLoss'] is None:
                config['Loss']['loss_config_list'][1]['SARLoss'] = {
                    'ignore_index': char_num + 1
                }
            else:
                config['Loss']['loss_config_list'][1]['SARLoss'][
                    'ignore_index'] = char_num + 1
            out_channels_list = {}
            out_channels_list['CTCLabelDecode'] = char_num
            out_channels_list['SARLabelDecode'] = char_num + 2
            config['Architecture']['Head'][
                'out_channels_list'] = out_channels_list
119 120 121
        else:  # base rec model
            config['Architecture']["Head"]['out_channels'] = char_num

littletomatodonkey's avatar
littletomatodonkey 已提交
122 123 124
        if config['PostProcess']['name'] == 'SARLabelDecode':  # for SAR model
            config['Loss']['ignore_index'] = char_num - 1

B
baiyfbupt 已提交
125 126 127 128 129 130
    model = build_model(config['Architecture'])

    # get QAT model
    quanter = QAT(config=quant_config)
    quanter.quantize(model)

131
    load_model(config, model)
B
baiyfbupt 已提交
132 133 134 135 136 137 138 139
    model.eval()

    # build metric
    eval_class = build_metric(config['Metric'])

    # build dataloader
    valid_dataloader = build_dataloader(config, 'Eval', device, logger)

L
LDOUBLEV 已提交
140
    use_srn = config['Architecture']['algorithm'] == "SRN"
A
andyjpaddle 已提交
141
    model_type = config['Architecture'].get('model_type', None)
B
baiyfbupt 已提交
142
    # start eval
L
LDOUBLEV 已提交
143
    metric = program.eval(model, valid_dataloader, post_process_class,
L
LDOUBLEV 已提交
144
                          eval_class, model_type, use_srn)
D
Double_V 已提交
145

B
baiyfbupt 已提交
146
    logger.info('metric eval ***************')
147
    for k, v in metric.items():
B
baiyfbupt 已提交
148 149
        logger.info('{}:{}'.format(k, v))

150 151 152
    save_path = config["Global"]["save_inference_dir"]

    arch_config = config["Architecture"]
littletomatodonkey's avatar
littletomatodonkey 已提交
153 154 155

    arch_config = config["Architecture"]

156
    if arch_config["algorithm"] in ["Distillation", ]:  # distillation model
littletomatodonkey's avatar
littletomatodonkey 已提交
157
        archs = list(arch_config["Models"].values())
158
        for idx, name in enumerate(model.model_name_list):
L
LDOUBLEV 已提交
159
            model.model_list[idx].eval()
160
            sub_model_save_path = os.path.join(save_path, name, "inference")
littletomatodonkey's avatar
littletomatodonkey 已提交
161 162
            export_single_model(model.model_list[idx], archs[idx],
                                sub_model_save_path, logger, quanter)
163 164
    else:
        save_path = os.path.join(save_path, "inference")
littletomatodonkey's avatar
littletomatodonkey 已提交
165
        export_single_model(model, arch_config, save_path, logger, quanter)
B
baiyfbupt 已提交
166 167 168 169 170


if __name__ == "__main__":
    config, device, logger, vdl_writer = program.preprocess()
    main()