readme.md 15.8 KB
Newer Older
M
update  
MissPenguin 已提交
1 2 3 4 5 6 7 8
- [Tutorial of PaddleOCR Mobile deployment](#tutorial-of-paddleocr-mobile-deployment)
  - [1. Preparation](#1-preparation)
    - [Preparation environment](#preparation-environment)
    - [1.1 Prepare the cross-compilation environment](#11-prepare-the-cross-compilation-environment)
    - [1.2 Prepare Paddle-Lite library](#12-prepare-paddle-lite-library)
  - [2 Run](#2-run)
    - [2.1 Inference Model Optimization](#21-inference-model-optimization)
    - [2.2 Run optimized model on Phone](#22-run-optimized-model-on-phone)
W
WenmuZhou 已提交
9 10
      - [注意:](#注意)
  - [FAQ](#faq)
W
WenmuZhou 已提交
11

M
update  
MissPenguin 已提交
12
# Tutorial of PaddleOCR Mobile deployment
W
WenmuZhou 已提交
13

M
update  
MissPenguin 已提交
14
This tutorial will introduce how to use [Paddle Lite](https://github.com/PaddlePaddle/Paddle-Lite) to deploy PaddleOCR ultra-lightweight Chinese and English detection models on mobile phones.
W
WenmuZhou 已提交
15

M
update  
MissPenguin 已提交
16
paddle-lite is a lightweight inference engine for PaddlePaddle. It provides efficient inference capabilities for mobile phones and IoT, and extensively integrates cross-platform hardware to provide lightweight deployment solutions for end-side deployment issues.
W
WenmuZhou 已提交
17

M
update  
MissPenguin 已提交
18
## 1. Preparation
W
WenmuZhou 已提交
19

M
update  
MissPenguin 已提交
20
### Preparation environment
W
WenmuZhou 已提交
21

M
update  
MissPenguin 已提交
22 23 24 25 26 27 28 29
- Computer (for Compiling Paddle Lite)
- Mobile phone (arm7 or arm8)

### 1.1 Prepare the cross-compilation environment
The cross-compilation environment is used to compile C++ demos of Paddle Lite and PaddleOCR.
Supports multiple development environments.

For the compilation process of different development environments, please refer to the corresponding documents.
W
WenmuZhou 已提交
30 31 32 33 34

1. [Docker](https://paddle-lite.readthedocs.io/zh/latest/source_compile/compile_env.html#docker)
2. [Linux](https://paddle-lite.readthedocs.io/zh/latest/source_compile/compile_env.html#linux)
3. [MAC OS](https://paddle-lite.readthedocs.io/zh/latest/source_compile/compile_env.html#mac-os)

M
update  
MissPenguin 已提交
35
### 1.2 Prepare Paddle-Lite library
W
WenmuZhou 已提交
36

M
update  
MissPenguin 已提交
37 38
There are two ways to obtain the Paddle-Lite library:
- 1. Download directly, the download link of the Paddle-Lite library is as follows:
W
WenmuZhou 已提交
39

M
update  
MissPenguin 已提交
40
      | Platform | Paddle-Lite library download link |
W
WenmuZhou 已提交
41
      |---|---|
W
WenmuZhou 已提交
42 43
      |Android|[arm7](https://github.com/PaddlePaddle/Paddle-Lite/releases/download/v2.10/inference_lite_lib.android.armv7.gcc.c++_shared.with_extra.with_cv.tar.gz) / [arm8](https://github.com/PaddlePaddle/Paddle-Lite/releases/download/v2.10/inference_lite_lib.android.armv8.gcc.c++_shared.with_extra.with_cv.tar.gz)|
      |IOS|[arm7](https://github.com/PaddlePaddle/Paddle-Lite/releases/download/v2.10/inference_lite_lib.ios.armv7.with_cv.with_extra.with_log.tiny_publish.tar.gz) / [arm8](https://github.com/PaddlePaddle/Paddle-Lite/releases/download/v2.10/inference_lite_lib.ios.armv8.with_cv.with_extra.with_log.tiny_publish.tar.gz)|
W
WenmuZhou 已提交
44

M
update  
MissPenguin 已提交
45
      Note: 1. The above Paddle-Lite library is compiled from the Paddle-Lite 2.10 branch. For more information about Paddle-Lite 2.10, please refer to [link](https://github.com/PaddlePaddle/Paddle-Lite/releases/tag/v2.10).
W
WenmuZhou 已提交
46

M
update  
MissPenguin 已提交
47
- 2. [Recommended] Compile Paddle-Lite to get the prediction library. The compilation method of Paddle-Lite is as follows:
W
WenmuZhou 已提交
48 49 50
```
git clone https://github.com/PaddlePaddle/Paddle-Lite.git
cd Paddle-Lite
M
update  
MissPenguin 已提交
51
# Switch to Paddle-Lite release/v2.10 stable branch
W
WenmuZhou 已提交
52
git checkout release/v2.10
W
WenmuZhou 已提交
53 54 55
./lite/tools/build_android.sh  --arch=armv8  --with_cv=ON --with_extra=ON
```

M
update  
MissPenguin 已提交
56 57 58
Note: When compiling Paddle-Lite to obtain the Paddle-Lite library, you need to turn on the two options `--with_cv=ON --with_extra=ON`, `--arch` means the `arm` version, here is designated as armv8,

More compilation commands refer to the introduction [link](https://paddle-lite.readthedocs.io/zh/release-v2.10_a/source_compile/linux_x86_compile_android.html)
W
WenmuZhou 已提交
59

M
update  
MissPenguin 已提交
60 61 62 63
After directly downloading the Paddle-Lite library and decompressing it, you can get the `inference_lite_lib.android.armv8/` folder, and the Paddle-Lite library obtained by compiling Paddle-Lite is located
`Paddle-Lite/build.lite.android.armv8.gcc/inference_lite_lib.android.armv8/` folder.

The structure of the prediction library is as follows:
W
WenmuZhou 已提交
64 65
```
inference_lite_lib.android.armv8/
M
update  
MissPenguin 已提交
66 67
|-- cxx                                        C++ prebuild library
|   |-- include                                C++
W
WenmuZhou 已提交
68 69 70 71 72 73 74
|   |   |-- paddle_api.h
|   |   |-- paddle_image_preprocess.h
|   |   |-- paddle_lite_factory_helper.h
|   |   |-- paddle_place.h
|   |   |-- paddle_use_kernels.h
|   |   |-- paddle_use_ops.h
|   |   `-- paddle_use_passes.h
M
update  
MissPenguin 已提交
75 76 77 78
|   `-- lib                                           C++ library
|       |-- libpaddle_api_light_bundled.a             C++ static library
|       `-- libpaddle_light_api_shared.so             C++ dynamic library
|-- java                                     Java library
W
WenmuZhou 已提交
79 80 81 82 83
|   |-- jar
|   |   `-- PaddlePredictor.jar
|   |-- so
|   |   `-- libpaddle_lite_jni.so
|   `-- src
M
update  
MissPenguin 已提交
84 85 86
|-- demo                                     C++ and Java demo
|   |-- cxx                                  C++ demo
|   `-- java                                 Java demo
W
WenmuZhou 已提交
87 88
```

M
update  
MissPenguin 已提交
89
## 2 Run
W
WenmuZhou 已提交
90

M
update  
MissPenguin 已提交
91
### 2.1 Inference Model Optimization
W
WenmuZhou 已提交
92

M
update  
MissPenguin 已提交
93
Paddle Lite provides a variety of strategies to automatically optimize the original training model, including quantization, sub-graph fusion, hybrid scheduling, Kernel optimization and so on. In order to make the optimization process more convenient and easy to use, Paddle Lite provide opt tools to automatically complete the optimization steps and output a lightweight, optimal executable model.
W
WenmuZhou 已提交
94

M
update  
MissPenguin 已提交
95
If you have prepared the model file ending in .nb, you can skip this step.
W
WenmuZhou 已提交
96

M
update  
MissPenguin 已提交
97
The following table also provides a series of models that can be deployed on mobile phones to recognize Chinese. You can directly download the optimized model.
W
WenmuZhou 已提交
98

M
update  
MissPenguin 已提交
99
|Version|Introduction|Model size|Detection model|Text Direction model|Recognition model|Paddle-Lite branch|
W
WenmuZhou 已提交
100
|---|---|---|---|---|---|---|
M
update  
MissPenguin 已提交
101 102
|PP-OCRv2|extra-lightweight chinese OCR optimized model|11M|[download link](https://paddleocr.bj.bcebos.com/PP-OCRv2/lite/ch_PP-OCRv2_det_infer_opt.nb)|[download link](https://paddleocr.bj.bcebos.com/PP-OCRv2/lite/ch_ppocr_mobile_v2.0_cls_infer_opt.nb)|[download link](https://paddleocr.bj.bcebos.com/PP-OCRv2/lite/ch_PP-OCRv2_rec_infer_opt.nb)|v2.10|
|PP-OCRv2(slim)|extra-lightweight chinese OCR optimized model|4.6M|[download link](https://paddleocr.bj.bcebos.com/PP-OCRv2/lite/ch_PP-OCRv2_det_slim_opt.nb)|[download link](https://paddleocr.bj.bcebos.com/PP-OCRv2/lite/ch_ppocr_mobile_v2.0_cls_slim_opt.nb)|[download link](https://paddleocr.bj.bcebos.com/PP-OCRv2/lite/ch_PP-OCRv2_rec_slim_opt.nb)|v2.10|
W
WenmuZhou 已提交
103

M
update  
MissPenguin 已提交
104
If you directly use the model in the above table for deployment, you can skip the following steps and directly read [Section 2.2](#2.2-Run-optimized-model-on-Phone).
W
WenmuZhou 已提交
105

M
update  
MissPenguin 已提交
106
If the model to be deployed is not in the above table, you need to follow the steps below to obtain the optimized model.
W
WenmuZhou 已提交
107

M
update  
MissPenguin 已提交
108
The `opt` tool can be obtained by compiling Paddle Lite.
W
WenmuZhou 已提交
109 110 111
```
git clone https://github.com/PaddlePaddle/Paddle-Lite.git
cd Paddle-Lite
W
WenmuZhou 已提交
112
git checkout release/v2.10
W
WenmuZhou 已提交
113 114 115
./lite/tools/build.sh build_optimize_tool
```

M
update  
MissPenguin 已提交
116 117
After the compilation is complete, the opt file is located under build.opt/lite/api/, You can view the operating options and usage of opt in the following ways:

W
WenmuZhou 已提交
118 119 120 121 122
```
cd build.opt/lite/api/
./opt
```

M
update  
MissPenguin 已提交
123
|Options|Description|
W
WenmuZhou 已提交
124
|---|---|
M
update  
MissPenguin 已提交
125 126 127 128 129 130 131
|--model_dir|The path of the PaddlePaddle model to be optimized (non-combined form)|
|--model_file|The network structure file path of the PaddlePaddle model (combined form) to be optimized|
|--param_file|The weight file path of the PaddlePaddle model (combined form) to be optimized|
|--optimize_out_type|Output model type, currently supports two types: protobuf and naive_buffer, among which naive_buffer is a more lightweight serialization/deserialization implementation. If you need to perform model prediction on the mobile side, please set this option to naive_buffer. The default is protobuf|
|--optimize_out|The output path of the optimized model|
|--valid_targets|The executable backend of the model, the default is arm. Currently it supports x86, arm, opencl, npu, xpu, multiple backends can be specified at the same time (separated by spaces), and Model Optimize Tool will automatically select the best method. If you need to support Huawei NPU (DaVinci architecture NPU equipped with Kirin 810/990 Soc), it should be set to npu, arm|
|--record_tailoring_info|When using the function of cutting library files according to the model, set this option to true to record the kernel and OP information contained in the optimized model. The default is false|
W
WenmuZhou 已提交
132

M
update  
MissPenguin 已提交
133
`--model_dir` is suitable for the non-combined mode of the model to be optimized, and the inference model of PaddleOCR is the combined mode, that is, the model structure and model parameters are stored in a single file.
W
WenmuZhou 已提交
134

M
update  
MissPenguin 已提交
135
The following takes the ultra-lightweight Chinese model of PaddleOCR as an example to introduce the use of the compiled opt file to complete the conversion of the inference model to the Paddle-Lite optimized model
W
WenmuZhou 已提交
136 137

```
M
update  
MissPenguin 已提交
138
# 【[Recommendation] Download the Chinese and English inference model of PP-OCRv2
W
WenmuZhou 已提交
139 140
wget  https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_slim_quant_infer.tar && tar xf  ch_PP-OCRv2_det_slim_quant_infer.tar
wget  https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_slim_quant_infer.tar && tar xf  ch_PP-OCRv2_rec_slim_quant_infer.tar
W
WenmuZhou 已提交
141
wget  https://paddleocr.bj.bcebos.com/dygraph_v2.0/slim/ch_ppocr_mobile_v2.0_cls_slim_infer.tar && tar xf  ch_ppocr_mobile_v2.0_cls_slim_infer.tar
M
update  
MissPenguin 已提交
142
# Convert detection model
W
WenmuZhou 已提交
143
./opt --model_file=./ch_PP-OCRv2_det_slim_quant_infer/inference.pdmodel  --param_file=./ch_PP-OCRv2_det_slim_quant_infer/inference.pdiparams  --optimize_out=./ch_PP-OCRv2_det_slim_opt --valid_targets=arm  --optimize_out_type=naive_buffer
M
update  
MissPenguin 已提交
144
# Convert recognition model
W
WenmuZhou 已提交
145
./opt --model_file=./ch_PP-OCRv2_rec_slim_quant_infer/inference.pdmodel  --param_file=./ch_PP-OCRv2_rec_slim_quant_infer/inference.pdiparams  --optimize_out=./ch_PP-OCRv2_rec_slim_opt --valid_targets=arm  --optimize_out_type=naive_buffer
M
update  
MissPenguin 已提交
146
# Convert angle classifier model
W
WenmuZhou 已提交
147
./opt --model_file=./ch_ppocr_mobile_v2.0_cls_slim_infer/inference.pdmodel  --param_file=./ch_ppocr_mobile_v2.0_cls_slim_infer/inference.pdiparams  --optimize_out=./ch_ppocr_mobile_v2.0_cls_slim_opt --valid_targets=arm  --optimize_out_type=naive_buffer
W
WenmuZhou 已提交
148

W
WenmuZhou 已提交
149 150
```

M
update  
MissPenguin 已提交
151
After the conversion is successful, there will be more files ending with `.nb` in the inference model directory, which is the successfully converted model file.
W
WenmuZhou 已提交
152

M
update  
MissPenguin 已提交
153 154
<a name="2.2-Run-optimized-model-on-Phone"></a>
### 2.2 Run optimized model on Phone
W
WenmuZhou 已提交
155

M
update  
MissPenguin 已提交
156 157 158 159
Some preparatory work is required first.
 1. Prepare an Android phone with arm8. If the compiled prediction library and opt file are armv7, you need an arm7 phone and modify ARM_ABI = arm7 in the Makefile.
 2. Make sure the phone is connected to the computer, open the USB debugging option of the phone, and select the file transfer mode.
 3. Install the adb tool on the computer.
W
WenmuZhou 已提交
160

M
update  
MissPenguin 已提交
161
    3.1. Install ADB for MAC:
W
WenmuZhou 已提交
162 163 164
    ```
    brew cask install android-platform-tools
    ```
M
update  
MissPenguin 已提交
165
    3.2. Install ADB for Linux
W
WenmuZhou 已提交
166 167 168 169
    ```
    sudo apt update
    sudo apt install -y wget adb
    ```
M
update  
MissPenguin 已提交
170
    3.3. Install ADB for windows
W
WenmuZhou 已提交
171

M
update  
MissPenguin 已提交
172
    To install on win, you need to go to Google's Android platform to download the adb package for installation:[link](https://developer.android.com/studio)
W
WenmuZhou 已提交
173

M
update  
MissPenguin 已提交
174 175
    Verify whether adb is installed successfully
     ```
W
WenmuZhou 已提交
176 177
    adb devices
    ```
M
update  
MissPenguin 已提交
178
    If there is device output, it means the installation is successful。
W
WenmuZhou 已提交
179 180 181 182 183
    ```
       List of devices attached
       744be294    device
    ```

M
update  
MissPenguin 已提交
184
 4. Prepare optimized models, prediction library files, test images and dictionary files used.
W
WenmuZhou 已提交
185 186 187
 ```
 git clone https://github.com/PaddlePaddle/PaddleOCR.git
 cd PaddleOCR/deploy/lite/
M
update  
MissPenguin 已提交
188
 # run prepare.sh
W
WenmuZhou 已提交
189 190
 sh prepare.sh /{lite prediction library path}/inference_lite_lib.android.armv8

M
update  
MissPenguin 已提交
191
 #
W
WenmuZhou 已提交
192 193
 cd /{lite prediction library path}/inference_lite_lib.android.armv8/
 cd demo/cxx/ocr/
M
update  
MissPenguin 已提交
194 195 196 197
 # copy paddle-lite C++ .so file to debug/ directory
 cp ../../../cxx/lib/libpaddle_light_api_shared.so ./debug/

 cd inference_lite_lib.android.armv8/demo/cxx/ocr/
W
WenmuZhou 已提交
198 199 200
 cp ../../../cxx/lib/libpaddle_light_api_shared.so ./debug/
 ```

M
update  
MissPenguin 已提交
201
Prepare the test image, taking PaddleOCR/doc/imgs/11.jpg as an example, copy the image file to the demo/cxx/ocr/debug/ folder. Prepare the model files optimized by the lite opt tool, ch_det_mv3_db_opt.nb, ch_rec_mv3_crnn_opt.nb, and place them under the demo/cxx/ocr/debug/ folder.
W
WenmuZhou 已提交
202

M
update  
MissPenguin 已提交
203
The structure of the OCR demo is as follows after the above command is executed:
W
WenmuZhou 已提交
204 205 206 207

```
demo/cxx/ocr/
|-- debug/  
M
update  
MissPenguin 已提交
208 209 210 211 212 213 214 215 216
|   |--ch_PP-OCRv2_det_slim_opt.nb           Detection model
|   |--ch_PP-OCRv2_rec_slim_opt.nb           Recognition model
|   |--ch_ppocr_mobile_v2.0_cls_slim_opt.nb           Text direction classification model
|   |--11.jpg                           Image for OCR
|   |--ppocr_keys_v1.txt                Dictionary file
|   |--libpaddle_light_api_shared.so    C++ .so file
|   |--config.txt                       Config file
|-- config.txt                  Config file
|-- cls_process.cc              Pre-processing and post-processing files for the angle classifier
W
WenmuZhou 已提交
217
|-- cls_process.h
M
update  
MissPenguin 已提交
218
|-- crnn_process.cc             Pre-processing and post-processing files for the CRNN model
W
WenmuZhou 已提交
219
|-- crnn_process.h
M
update  
MissPenguin 已提交
220
|-- db_post_process.cc          Pre-processing and post-processing files for the DB model
W
WenmuZhou 已提交
221
|-- db_post_process.h
M
update  
MissPenguin 已提交
222 223
|-- Makefile  
|-- ocr_db_crnn.cc              C++ main code
W
WenmuZhou 已提交
224 225 226
```

#### 注意:
M
update  
MissPenguin 已提交
227
1. `ppocr_keys_v1.txt` is a Chinese dictionary file. If the nb model is used for English recognition or other language recognition, dictionary file should be replaced with a dictionary of the corresponding language. PaddleOCR provides a variety of dictionaries under ppocr/utils/, including:
W
WenmuZhou 已提交
228
```
M
update  
MissPenguin 已提交
229 230 231 232 233 234
dict/french_dict.txt     # french
dict/german_dict.txt     # german
ic15_dict.txt       # english
dict/japan_dict.txt      # japan
dict/korean_dict.txt     # korean
ppocr_keys_v1.txt   # chinese
W
WenmuZhou 已提交
235 236
```

M
update  
MissPenguin 已提交
237
2.  `config.txt` of the detector and classifier, as shown below:
W
WenmuZhou 已提交
238
```
M
update  
MissPenguin 已提交
239 240 241 242 243
max_side_len  960         #  Limit the maximum image height and width to 960
det_db_thresh  0.3        # Used to filter the binarized image of DB prediction, setting 0.-0.3 has no obvious effect on the result
det_db_box_thresh  0.5    # DDB post-processing filter box threshold, if there is a missing box detected, it can be reduced as appropriate
det_db_unclip_ratio  1.6  # Indicates the compactness of the text box, the smaller the value, the closer the text box to the text
use_direction_classify  0  # Whether to use the direction classifier, 0 means not to use, 1 means to use
W
WenmuZhou 已提交
244 245
```

M
update  
MissPenguin 已提交
246
 5. Run Model on phone
W
WenmuZhou 已提交
247

M
update  
MissPenguin 已提交
248
After the above steps are completed, you can use adb to push the file to the phone to run, the steps are as follows:
W
WenmuZhou 已提交
249 250

 ```
M
update  
MissPenguin 已提交
251 252
 # Execute the compilation and get the executable file ocr_db_crnn
 # The first execution of this command will download dependent libraries such as opencv. After the download is complete, you need to execute it again
W
WenmuZhou 已提交
253
 make -j
M
update  
MissPenguin 已提交
254
 # Move the compiled executable file to the debug folder
W
WenmuZhou 已提交
255
 mv ocr_db_crnn ./debug/
M
update  
MissPenguin 已提交
256
 # Push the debug folder to the phone
W
WenmuZhou 已提交
257 258 259 260
 adb push debug /data/local/tmp/
 adb shell
 cd /data/local/tmp/debug
 export LD_LIBRARY_PATH=${PWD}:$LD_LIBRARY_PATH
M
update  
MissPenguin 已提交
261 262 263
 # The use of ocr_db_crnn is:
 # ./ocr_db_crnn Detection model file Orientation classifier model file Recognition model file Test image path Dictionary file path
 ./ocr_db_crnn ch_PP-OCRv2_det_slim_opt.nb  ch_PP-OCRv2_rec_slim_opt.nb  ch_ppocr_mobile_v2.0_cls_opt.nb  ./11.jpg  ppocr_keys_v1.txt
W
WenmuZhou 已提交
264 265
 ```

M
update  
MissPenguin 已提交
266
If you modify the code, you need to recompile and push to the phone.
W
WenmuZhou 已提交
267

M
update  
MissPenguin 已提交
268
The outputs are as follows:
W
WenmuZhou 已提交
269 270

<div align="center">
W
WenmuZhou 已提交
271
    <img src="imgs/lite_demo.png" width="600">
W
WenmuZhou 已提交
272 273 274
</div>

## FAQ
W
WenmuZhou 已提交
275

M
update  
MissPenguin 已提交
276 277 278
Q1: What if I want to change the model, do I need to run it again according to the process?

A1: If you have performed the above steps, you only need to replace the .nb model file to complete the model replacement.
W
WenmuZhou 已提交
279

M
update  
MissPenguin 已提交
280
Q2: How to test with another picture?
W
WenmuZhou 已提交
281

M
update  
MissPenguin 已提交
282
A2: Replace the .jpg test image under ./debug with the image you want to test, and run adb push to push new image to the phone.
W
WenmuZhou 已提交
283

M
update  
MissPenguin 已提交
284
Q3: How to package it into the mobile APP?
W
WenmuZhou 已提交
285

M
update  
MissPenguin 已提交
286
A3: This demo aims to provide the core algorithm part that can run OCR on mobile phones. Further, PaddleOCR/deploy/android_demo is an example of encapsulating this demo into a mobile app for reference.