table_master_match.py 35.8 KB
Newer Older
文幕地方's avatar
文幕地方 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This code is refer from:
https://github.com/JiaquanYe/TableMASTER-mmocr/blob/master/table_recognition/match.py
"""

文幕地方's avatar
文幕地方 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953
import os
import re
import cv2
import glob
import copy
import math
import pickle
import numpy as np

from shapely.geometry import Polygon, MultiPoint
"""
Useful function in matching.
"""


def remove_empty_bboxes(bboxes):
    """
    remove [0., 0., 0., 0.] in structure master bboxes.
    len(bboxes.shape) must be 2.
    :param bboxes:
    :return:
    """
    new_bboxes = []
    for bbox in bboxes:
        if sum(bbox) == 0.:
            continue
        new_bboxes.append(bbox)
    return np.array(new_bboxes)


def xywh2xyxy(bboxes):
    if len(bboxes.shape) == 1:
        new_bboxes = np.empty_like(bboxes)
        new_bboxes[0] = bboxes[0] - bboxes[2] / 2
        new_bboxes[1] = bboxes[1] - bboxes[3] / 2
        new_bboxes[2] = bboxes[0] + bboxes[2] / 2
        new_bboxes[3] = bboxes[1] + bboxes[3] / 2
        return new_bboxes
    elif len(bboxes.shape) == 2:
        new_bboxes = np.empty_like(bboxes)
        new_bboxes[:, 0] = bboxes[:, 0] - bboxes[:, 2] / 2
        new_bboxes[:, 1] = bboxes[:, 1] - bboxes[:, 3] / 2
        new_bboxes[:, 2] = bboxes[:, 0] + bboxes[:, 2] / 2
        new_bboxes[:, 3] = bboxes[:, 1] + bboxes[:, 3] / 2
        return new_bboxes
    else:
        raise ValueError


def xyxy2xywh(bboxes):
    if len(bboxes.shape) == 1:
        new_bboxes = np.empty_like(bboxes)
        new_bboxes[0] = bboxes[0] + (bboxes[2] - bboxes[0]) / 2
        new_bboxes[1] = bboxes[1] + (bboxes[3] - bboxes[1]) / 2
        new_bboxes[2] = bboxes[2] - bboxes[0]
        new_bboxes[3] = bboxes[3] - bboxes[1]
        return new_bboxes
    elif len(bboxes.shape) == 2:
        new_bboxes = np.empty_like(bboxes)
        new_bboxes[:, 0] = bboxes[:, 0] + (bboxes[:, 2] - bboxes[:, 0]) / 2
        new_bboxes[:, 1] = bboxes[:, 1] + (bboxes[:, 3] - bboxes[:, 1]) / 2
        new_bboxes[:, 2] = bboxes[:, 2] - bboxes[:, 0]
        new_bboxes[:, 3] = bboxes[:, 3] - bboxes[:, 1]
        return new_bboxes
    else:
        raise ValueError


def pickle_load(path, prefix='end2end'):
    if os.path.isfile(path):
        data = pickle.load(open(path, 'rb'))
    elif os.path.isdir(path):
        data = dict()
        search_path = os.path.join(path, '{}_*.pkl'.format(prefix))
        pkls = glob.glob(search_path)
        for pkl in pkls:
            this_data = pickle.load(open(pkl, 'rb'))
            data.update(this_data)
    else:
        raise ValueError
    return data


def convert_coord(xyxy):
    """
    Convert two points format to four points format.
    :param xyxy:
    :return:
    """
    new_bbox = np.zeros([4, 2], dtype=np.float32)
    new_bbox[0, 0], new_bbox[0, 1] = xyxy[0], xyxy[1]
    new_bbox[1, 0], new_bbox[1, 1] = xyxy[2], xyxy[1]
    new_bbox[2, 0], new_bbox[2, 1] = xyxy[2], xyxy[3]
    new_bbox[3, 0], new_bbox[3, 1] = xyxy[0], xyxy[3]
    return new_bbox


def cal_iou(bbox1, bbox2):
    bbox1_poly = Polygon(bbox1).convex_hull
    bbox2_poly = Polygon(bbox2).convex_hull
    union_poly = np.concatenate((bbox1, bbox2))

    if not bbox1_poly.intersects(bbox2_poly):
        iou = 0
    else:
        inter_area = bbox1_poly.intersection(bbox2_poly).area
        union_area = MultiPoint(union_poly).convex_hull.area
        if union_area == 0:
            iou = 0
        else:
            iou = float(inter_area) / union_area
    return iou


def cal_distance(p1, p2):
    delta_x = p1[0] - p2[0]
    delta_y = p1[1] - p2[1]
    d = math.sqrt((delta_x**2) + (delta_y**2))
    return d


def is_inside(center_point, corner_point):
    """
    Find if center_point inside the bbox(corner_point) or not.
    :param center_point: center point (x, y)
    :param corner_point: corner point ((x1,y1),(x2,y2))
    :return:
    """
    x_flag = False
    y_flag = False
    if (center_point[0] >= corner_point[0][0]) and (
            center_point[0] <= corner_point[1][0]):
        x_flag = True
    if (center_point[1] >= corner_point[0][1]) and (
            center_point[1] <= corner_point[1][1]):
        y_flag = True
    if x_flag and y_flag:
        return True
    else:
        return False


def find_no_match(match_list, all_end2end_nums, type='end2end'):
    """
    Find out no match end2end bbox in previous match list.
    :param match_list: matching pairs.
    :param all_end2end_nums: numbers of end2end_xywh
    :param type: 'end2end' corresponding to idx 0, 'master' corresponding to idx 1.
    :return: no match pse bbox index list
    """
    if type == 'end2end':
        idx = 0
    elif type == 'master':
        idx = 1
    else:
        raise ValueError

    no_match_indexs = []
    # m[0] is end2end index m[1] is master index
    matched_bbox_indexs = [m[idx] for m in match_list]
    for n in range(all_end2end_nums):
        if n not in matched_bbox_indexs:
            no_match_indexs.append(n)
    return no_match_indexs


def is_abs_lower_than_threshold(this_bbox, target_bbox, threshold=3):
    # only consider y axis, for grouping in row.
    delta = abs(this_bbox[1] - target_bbox[1])
    if delta < threshold:
        return True
    else:
        return False


def sort_line_bbox(g, bg):
    """
    Sorted the bbox in the same line(group)
    compare coord 'x' value, where 'y' value is closed in the same group.
    :param g: index in the same group
    :param bg: bbox in the same group
    :return:
    """

    xs = [bg_item[0] for bg_item in bg]
    xs_sorted = sorted(xs)

    g_sorted = [None] * len(xs_sorted)
    bg_sorted = [None] * len(xs_sorted)
    for g_item, bg_item in zip(g, bg):
        idx = xs_sorted.index(bg_item[0])
        bg_sorted[idx] = bg_item
        g_sorted[idx] = g_item

    return g_sorted, bg_sorted


def flatten(sorted_groups, sorted_bbox_groups):
    idxs = []
    bboxes = []
    for group, bbox_group in zip(sorted_groups, sorted_bbox_groups):
        for g, bg in zip(group, bbox_group):
            idxs.append(g)
            bboxes.append(bg)
    return idxs, bboxes


def sort_bbox(end2end_xywh_bboxes, no_match_end2end_indexes):
    """
    This function will group the render end2end bboxes in row.
    :param end2end_xywh_bboxes:
    :param no_match_end2end_indexes:
    :return:
    """
    groups = []
    bbox_groups = []
    for index, end2end_xywh_bbox in zip(no_match_end2end_indexes,
                                        end2end_xywh_bboxes):
        this_bbox = end2end_xywh_bbox
        if len(groups) == 0:
            groups.append([index])
            bbox_groups.append([this_bbox])
        else:
            flag = False
            for g, bg in zip(groups, bbox_groups):
                # this_bbox is belong to bg's row or not
                if is_abs_lower_than_threshold(this_bbox, bg[0]):
                    g.append(index)
                    bg.append(this_bbox)
                    flag = True
                    break
            if not flag:
                # this_bbox is not belong to bg's row, create a row.
                groups.append([index])
                bbox_groups.append([this_bbox])

    # sorted bboxes in a group
    tmp_groups, tmp_bbox_groups = [], []
    for g, bg in zip(groups, bbox_groups):
        g_sorted, bg_sorted = sort_line_bbox(g, bg)
        tmp_groups.append(g_sorted)
        tmp_bbox_groups.append(bg_sorted)

    # sorted groups, sort by coord y's value.
    sorted_groups = [None] * len(tmp_groups)
    sorted_bbox_groups = [None] * len(tmp_bbox_groups)
    ys = [bg[0][1] for bg in tmp_bbox_groups]
    sorted_ys = sorted(ys)
    for g, bg in zip(tmp_groups, tmp_bbox_groups):
        idx = sorted_ys.index(bg[0][1])
        sorted_groups[idx] = g
        sorted_bbox_groups[idx] = bg

    # flatten, get final result
    end2end_sorted_idx_list, end2end_sorted_bbox_list \
        = flatten(sorted_groups, sorted_bbox_groups)

    return end2end_sorted_idx_list, end2end_sorted_bbox_list, sorted_groups, sorted_bbox_groups


def get_bboxes_list(end2end_result, structure_master_result):
    """
    This function is use to convert end2end results and structure master results to
    List of xyxy bbox format and List of xywh bbox format
    :param end2end_result: bbox's format is xyxy
    :param structure_master_result: bbox's format is xywh
    :return: 4 kind list of bbox ()
    """
    # end2end
    end2end_xyxy_list = []
    end2end_xywh_list = []
    for end2end_item in end2end_result:
        src_bbox = end2end_item['bbox']
        end2end_xyxy_list.append(src_bbox)
        xywh_bbox = xyxy2xywh(src_bbox)
        end2end_xywh_list.append(xywh_bbox)
    end2end_xyxy_bboxes = np.array(end2end_xyxy_list)
    end2end_xywh_bboxes = np.array(end2end_xywh_list)

    # structure master
    src_bboxes = structure_master_result['bbox']
    src_bboxes = remove_empty_bboxes(src_bboxes)
    structure_master_xyxy_bboxes = src_bboxes
    xywh_bbox = xyxy2xywh(src_bboxes)
    structure_master_xywh_bboxes = xywh_bbox

    return end2end_xyxy_bboxes, end2end_xywh_bboxes, structure_master_xywh_bboxes, structure_master_xyxy_bboxes


def center_rule_match(end2end_xywh_bboxes, structure_master_xyxy_bboxes):
    """
    Judge end2end Bbox's center point is inside structure master Bbox or not,
    if end2end Bbox's center is in structure master Bbox, get matching pair.
    :param end2end_xywh_bboxes:
    :param structure_master_xyxy_bboxes:
    :return: match pairs list, e.g. [[0,1], [1,2], ...]
    """
    match_pairs_list = []
    for i, end2end_xywh in enumerate(end2end_xywh_bboxes):
        for j, master_xyxy in enumerate(structure_master_xyxy_bboxes):
            x_end2end, y_end2end = end2end_xywh[0], end2end_xywh[1]
            x_master1, y_master1, x_master2, y_master2 \
                = master_xyxy[0], master_xyxy[1], master_xyxy[2], master_xyxy[3]
            center_point_end2end = (x_end2end, y_end2end)
            corner_point_master = ((x_master1, y_master1),
                                   (x_master2, y_master2))
            if is_inside(center_point_end2end, corner_point_master):
                match_pairs_list.append([i, j])
    return match_pairs_list


def iou_rule_match(end2end_xyxy_bboxes, end2end_xyxy_indexes,
                   structure_master_xyxy_bboxes):
    """
    Use iou to find matching list.
    choose max iou value bbox as match pair.
    :param end2end_xyxy_bboxes:
    :param end2end_xyxy_indexes: original end2end indexes.
    :param structure_master_xyxy_bboxes:
    :return: match pairs list, e.g. [[0,1], [1,2], ...]
    """
    match_pair_list = []
    for end2end_xyxy_index, end2end_xyxy in zip(end2end_xyxy_indexes,
                                                end2end_xyxy_bboxes):
        max_iou = 0
        max_match = [None, None]
        for j, master_xyxy in enumerate(structure_master_xyxy_bboxes):
            end2end_4xy = convert_coord(end2end_xyxy)
            master_4xy = convert_coord(master_xyxy)
            iou = cal_iou(end2end_4xy, master_4xy)
            if iou > max_iou:
                max_match[0], max_match[1] = end2end_xyxy_index, j
                max_iou = iou

        if max_match[0] is None:
            # no match
            continue
        match_pair_list.append(max_match)
    return match_pair_list


def distance_rule_match(end2end_indexes, end2end_bboxes, master_indexes,
                        master_bboxes):
    """
    Get matching between no-match end2end bboxes and no-match master bboxes.
    Use min distance to match.
    This rule will only run (no-match end2end nums > 0) and (no-match master nums > 0)
    It will Return master_bboxes_nums match-pairs.
    :param end2end_indexes:
    :param end2end_bboxes:
    :param master_indexes:
    :param master_bboxes:
    :return: match_pairs list, e.g. [[0,1], [1,2], ...]
    """
    min_match_list = []
    for j, master_bbox in zip(master_indexes, master_bboxes):
        min_distance = np.inf
        min_match = [0, 0]  # i, j
        for i, end2end_bbox in zip(end2end_indexes, end2end_bboxes):
            x_end2end, y_end2end = end2end_bbox[0], end2end_bbox[1]
            x_master, y_master = master_bbox[0], master_bbox[1]
            end2end_point = (x_end2end, y_end2end)
            master_point = (x_master, y_master)
            dist = cal_distance(master_point, end2end_point)
            if dist < min_distance:
                min_match[0], min_match[1] = i, j
                min_distance = dist
        min_match_list.append(min_match)
    return min_match_list


def extra_match(no_match_end2end_indexes, master_bbox_nums):
    """
    This function will create some virtual master bboxes,
    and get match with the no match end2end indexes.
    :param no_match_end2end_indexes:
    :param master_bbox_nums:
    :return:
    """
    end_nums = len(no_match_end2end_indexes) + master_bbox_nums
    extra_match_list = []
    for i in range(master_bbox_nums, end_nums):
        end2end_index = no_match_end2end_indexes[i - master_bbox_nums]
        extra_match_list.append([end2end_index, i])
    return extra_match_list


def get_match_dict(match_list):
    """
    Convert match_list to a dict, where key is master bbox's index, value is end2end bbox index.
    :param match_list:
    :return:
    """
    match_dict = dict()
    for match_pair in match_list:
        end2end_index, master_index = match_pair[0], match_pair[1]
        if master_index not in match_dict.keys():
            match_dict[master_index] = [end2end_index]
        else:
            match_dict[master_index].append(end2end_index)
    return match_dict


def deal_successive_space(text):
    """
    deal successive space character for text
    1. Replace ' '*3 with '<space>' which is real space is text
    2. Remove ' ', which is split token, not true space
    3. Replace '<space>' with ' ', to get real text
    :param text:
    :return:
    """
    text = text.replace(' ' * 3, '<space>')
    text = text.replace(' ', '')
    text = text.replace('<space>', ' ')
    return text


def reduce_repeat_bb(text_list, break_token):
    """
    convert ['<b>Local</b>', '<b>government</b>', '<b>unit</b>'] to ['<b>Local government unit</b>']
    PS: maybe style <i>Local</i> is also exist, too. it can be processed like this.
    :param text_list:
    :param break_token:
    :return:
    """
    count = 0
    for text in text_list:
        if text.startswith('<b>'):
            count += 1
    if count == len(text_list):
        new_text_list = []
        for text in text_list:
            text = text.replace('<b>', '').replace('</b>', '')
            new_text_list.append(text)
        return ['<b>' + break_token.join(new_text_list) + '</b>']
    else:
        return text_list


def get_match_text_dict(match_dict, end2end_info, break_token=' '):
    match_text_dict = dict()
    for master_index, end2end_index_list in match_dict.items():
        text_list = [
            end2end_info[end2end_index]['text']
            for end2end_index in end2end_index_list
        ]
        text_list = reduce_repeat_bb(text_list, break_token)
        text = break_token.join(text_list)
        match_text_dict[master_index] = text
    return match_text_dict


def merge_span_token(master_token_list):
    """
    Merge the span style token (row span or col span).
    :param master_token_list:
    :return:
    """
    new_master_token_list = []
    pointer = 0
    if master_token_list[-1] != '</tbody>':
        master_token_list.append('</tbody>')
    while master_token_list[pointer] != '</tbody>':
        try:
            if master_token_list[pointer] == '<td':
                if master_token_list[pointer + 1].startswith(
                        ' colspan=') or master_token_list[
                            pointer + 1].startswith(' rowspan='):
                    """
                    example:
                    pattern <td colspan="3">
                    '<td' + 'colspan=" "' + '>' + '</td>'
                    """
                    tmp = ''.join(master_token_list[pointer:pointer + 3 + 1])
                    pointer += 4
                    new_master_token_list.append(tmp)

                elif master_token_list[pointer + 2].startswith(
                        ' colspan=') or master_token_list[
                            pointer + 2].startswith(' rowspan='):
                    """
                    example:
                    pattern <td rowspan="2" colspan="3">
                    '<td' + 'rowspan=" "' + 'colspan=" "' + '>' + '</td>'
                    """
                    tmp = ''.join(master_token_list[pointer:pointer + 4 + 1])
                    pointer += 5
                    new_master_token_list.append(tmp)

                else:
                    new_master_token_list.append(master_token_list[pointer])
                    pointer += 1
            else:
                new_master_token_list.append(master_token_list[pointer])
                pointer += 1
        except:
            print("Break in merge...")
            break
    new_master_token_list.append('</tbody>')

    return new_master_token_list


def deal_eb_token(master_token):
    """
    post process with <eb></eb>, <eb1></eb1>, ...
    emptyBboxTokenDict = {
        "[]": '<eb></eb>',
        "[' ']": '<eb1></eb1>',
        "['<b>', ' ', '</b>']": '<eb2></eb2>',
        "['\\u2028', '\\u2028']": '<eb3></eb3>',
        "['<sup>', ' ', '</sup>']": '<eb4></eb4>',
        "['<b>', '</b>']": '<eb5></eb5>',
        "['<i>', ' ', '</i>']": '<eb6></eb6>',
        "['<b>', '<i>', '</i>', '</b>']": '<eb7></eb7>',
        "['<b>', '<i>', ' ', '</i>', '</b>']": '<eb8></eb8>',
        "['<i>', '</i>']": '<eb9></eb9>',
        "['<b>', ' ', '\\u2028', ' ', '\\u2028', ' ', '</b>']": '<eb10></eb10>',
    }
    :param master_token:
    :return:
    """
    master_token = master_token.replace('<eb></eb>', '<td></td>')
    master_token = master_token.replace('<eb1></eb1>', '<td> </td>')
    master_token = master_token.replace('<eb2></eb2>', '<td><b> </b></td>')
    master_token = master_token.replace('<eb3></eb3>', '<td>\u2028\u2028</td>')
    master_token = master_token.replace('<eb4></eb4>', '<td><sup> </sup></td>')
    master_token = master_token.replace('<eb5></eb5>', '<td><b></b></td>')
    master_token = master_token.replace('<eb6></eb6>', '<td><i> </i></td>')
    master_token = master_token.replace('<eb7></eb7>',
                                        '<td><b><i></i></b></td>')
    master_token = master_token.replace('<eb8></eb8>',
                                        '<td><b><i> </i></b></td>')
    master_token = master_token.replace('<eb9></eb9>', '<td><i></i></td>')
    master_token = master_token.replace('<eb10></eb10>',
                                        '<td><b> \u2028 \u2028 </b></td>')
    return master_token


def insert_text_to_token(master_token_list, match_text_dict):
    """
    Insert OCR text result to structure token.
    :param master_token_list:
    :param match_text_dict:
    :return:
    """
    master_token_list = merge_span_token(master_token_list)
    merged_result_list = []
    text_count = 0
    for master_token in master_token_list:
        if master_token.startswith('<td'):
            if text_count > len(match_text_dict) - 1:
                text_count += 1
                continue
            elif text_count not in match_text_dict.keys():
                text_count += 1
                continue
            else:
                master_token = master_token.replace(
                    '><', '>{}<'.format(match_text_dict[text_count]))
                text_count += 1
        master_token = deal_eb_token(master_token)
        merged_result_list.append(master_token)

    return ''.join(merged_result_list)


def deal_isolate_span(thead_part):
    """
    Deal with isolate span cases in this function.
    It causes by wrong prediction in structure recognition model.
    eg. predict <td rowspan="2"></td> to <td></td> rowspan="2"></b></td>.
    :param thead_part:
    :return:
    """
    # 1. find out isolate span tokens.
    isolate_pattern = "<td></td> rowspan=\"(\d)+\" colspan=\"(\d)+\"></b></td>|" \
                      "<td></td> colspan=\"(\d)+\" rowspan=\"(\d)+\"></b></td>|" \
                      "<td></td> rowspan=\"(\d)+\"></b></td>|" \
                      "<td></td> colspan=\"(\d)+\"></b></td>"
    isolate_iter = re.finditer(isolate_pattern, thead_part)
    isolate_list = [i.group() for i in isolate_iter]

    # 2. find out span number, by step 1 results.
    span_pattern = " rowspan=\"(\d)+\" colspan=\"(\d)+\"|" \
                   " colspan=\"(\d)+\" rowspan=\"(\d)+\"|" \
                   " rowspan=\"(\d)+\"|" \
                   " colspan=\"(\d)+\""
    corrected_list = []
    for isolate_item in isolate_list:
        span_part = re.search(span_pattern, isolate_item)
        spanStr_in_isolateItem = span_part.group()
        # 3. merge the span number into the span token format string.
        if spanStr_in_isolateItem is not None:
            corrected_item = '<td{}></td>'.format(spanStr_in_isolateItem)
            corrected_list.append(corrected_item)
        else:
            corrected_list.append(None)

    # 4. replace original isolated token.
    for corrected_item, isolate_item in zip(corrected_list, isolate_list):
        if corrected_item is not None:
            thead_part = thead_part.replace(isolate_item, corrected_item)
        else:
            pass
    return thead_part


def deal_duplicate_bb(thead_part):
    """
    Deal duplicate <b> or </b> after replace.
    Keep one <b></b> in a <td></td> token.
    :param thead_part:
    :return:
    """
    # 1. find out <td></td> in <thead></thead>.
    td_pattern = "<td rowspan=\"(\d)+\" colspan=\"(\d)+\">(.+?)</td>|" \
                 "<td colspan=\"(\d)+\" rowspan=\"(\d)+\">(.+?)</td>|" \
                 "<td rowspan=\"(\d)+\">(.+?)</td>|" \
                 "<td colspan=\"(\d)+\">(.+?)</td>|" \
                 "<td>(.*?)</td>"
    td_iter = re.finditer(td_pattern, thead_part)
    td_list = [t.group() for t in td_iter]

    # 2. is multiply <b></b> in <td></td> or not?
    new_td_list = []
    for td_item in td_list:
        if td_item.count('<b>') > 1 or td_item.count('</b>') > 1:
            # multiply <b></b> in <td></td> case.
            # 1. remove all <b></b>
            td_item = td_item.replace('<b>', '').replace('</b>', '')
            # 2. replace <tb> -> <tb><b>, </tb> -> </b></tb>.
            td_item = td_item.replace('<td>', '<td><b>').replace('</td>',
                                                                 '</b></td>')
            new_td_list.append(td_item)
        else:
            new_td_list.append(td_item)

    # 3. replace original thead part.
    for td_item, new_td_item in zip(td_list, new_td_list):
        thead_part = thead_part.replace(td_item, new_td_item)
    return thead_part


def deal_bb(result_token):
    """
    In our opinion, <b></b> always occurs in <thead></thead> text's context.
    This function will find out all tokens in <thead></thead> and insert <b></b> by manual.
    :param result_token:
    :return:
    """
    # find out <thead></thead> parts.
    thead_pattern = '<thead>(.*?)</thead>'
    if re.search(thead_pattern, result_token) is None:
        return result_token
    thead_part = re.search(thead_pattern, result_token).group()
    origin_thead_part = copy.deepcopy(thead_part)

    # check "rowspan" or "colspan" occur in <thead></thead> parts or not .
    span_pattern = "<td rowspan=\"(\d)+\" colspan=\"(\d)+\">|<td colspan=\"(\d)+\" rowspan=\"(\d)+\">|<td rowspan=\"(\d)+\">|<td colspan=\"(\d)+\">"
    span_iter = re.finditer(span_pattern, thead_part)
    span_list = [s.group() for s in span_iter]
    has_span_in_head = True if len(span_list) > 0 else False

    if not has_span_in_head:
        # <thead></thead> not include "rowspan" or "colspan" branch 1.
        # 1. replace <td> to <td><b>, and </td> to </b></td>
        # 2. it is possible to predict text include <b> or </b> by Text-line recognition,
        #    so we replace <b><b> to <b>, and </b></b> to </b>
        thead_part = thead_part.replace('<td>', '<td><b>')\
            .replace('</td>', '</b></td>')\
            .replace('<b><b>', '<b>')\
            .replace('</b></b>', '</b>')
    else:
        # <thead></thead> include "rowspan" or "colspan" branch 2.
        # Firstly, we deal rowspan or colspan cases.
        # 1. replace > to ><b>
        # 2. replace </td> to </b></td>
        # 3. it is possible to predict text include <b> or </b> by Text-line recognition,
        #    so we replace <b><b> to <b>, and </b><b> to </b>

        # Secondly, deal ordinary cases like branch 1

        # replace ">" to "<b>"
        replaced_span_list = []
        for sp in span_list:
            replaced_span_list.append(sp.replace('>', '><b>'))
        for sp, rsp in zip(span_list, replaced_span_list):
            thead_part = thead_part.replace(sp, rsp)

        # replace "</td>" to "</b></td>"
        thead_part = thead_part.replace('</td>', '</b></td>')

        # remove duplicated <b> by re.sub
        mb_pattern = "(<b>)+"
        single_b_string = "<b>"
        thead_part = re.sub(mb_pattern, single_b_string, thead_part)

        mgb_pattern = "(</b>)+"
        single_gb_string = "</b>"
        thead_part = re.sub(mgb_pattern, single_gb_string, thead_part)

        # ordinary cases like branch 1
        thead_part = thead_part.replace('<td>', '<td><b>').replace('<b><b>',
                                                                   '<b>')

    # convert <tb><b></b></tb> back to <tb></tb>, empty cell has no <b></b>.
    # but space cell(<tb> </tb>)  is suitable for <td><b> </b></td>
    thead_part = thead_part.replace('<td><b></b></td>', '<td></td>')
    # deal with duplicated <b></b>
    thead_part = deal_duplicate_bb(thead_part)
    # deal with isolate span tokens, which causes by wrong predict by structure prediction.
    # eg.PMC5994107_011_00.png
    thead_part = deal_isolate_span(thead_part)
    # replace original result with new thead part.
    result_token = result_token.replace(origin_thead_part, thead_part)
    return result_token


class Matcher:
    def __init__(self, end2end_file, structure_master_file):
        """
        This class process the end2end results and structure recognition results.
        :param end2end_file: end2end results predict by end2end inference.
        :param structure_master_file: structure recognition results predict by structure master inference.
        """
        self.end2end_file = end2end_file
        self.structure_master_file = structure_master_file
        self.end2end_results = pickle_load(end2end_file, prefix='end2end')
        self.structure_master_results = pickle_load(
            structure_master_file, prefix='structure')

    def match(self):
        """
        Match process:
        pre-process : convert end2end and structure master results to xyxy, xywh ndnarray format.
        1. Use pseBbox is inside masterBbox judge rule
        2. Use iou between pseBbox and masterBbox rule
        3. Use min distance of center point rule
        :return:
        """
        match_results = dict()
        for idx, (file_name,
                  end2end_result) in enumerate(self.end2end_results.items()):
            match_list = []
            if file_name not in self.structure_master_results:
                continue
            structure_master_result = self.structure_master_results[file_name]
            end2end_xyxy_bboxes, end2end_xywh_bboxes, structure_master_xywh_bboxes, structure_master_xyxy_bboxes = \
                get_bboxes_list(end2end_result, structure_master_result)

            # rule 1: center rule
            center_rule_match_list = \
                center_rule_match(end2end_xywh_bboxes, structure_master_xyxy_bboxes)
            match_list.extend(center_rule_match_list)

            # rule 2: iou rule
            # firstly, find not match index in previous step.
            center_no_match_end2end_indexs = \
                find_no_match(match_list, len(end2end_xywh_bboxes), type='end2end')
            if len(center_no_match_end2end_indexs) > 0:
                center_no_match_end2end_xyxy = end2end_xyxy_bboxes[
                    center_no_match_end2end_indexs]
                # secondly, iou rule match
                iou_rule_match_list = \
                    iou_rule_match(center_no_match_end2end_xyxy, center_no_match_end2end_indexs, structure_master_xyxy_bboxes)
                match_list.extend(iou_rule_match_list)

            # rule 3: distance rule
            # match between no-match end2end bboxes and no-match master bboxes.
            # it will return master_bboxes_nums match-pairs.
            # firstly, find not match index in previous step.
            centerIou_no_match_end2end_indexs = \
                find_no_match(match_list, len(end2end_xywh_bboxes), type='end2end')
            centerIou_no_match_master_indexs = \
                find_no_match(match_list, len(structure_master_xywh_bboxes), type='master')
            if len(centerIou_no_match_master_indexs) > 0 and len(
                    centerIou_no_match_end2end_indexs) > 0:
                centerIou_no_match_end2end_xywh = end2end_xywh_bboxes[
                    centerIou_no_match_end2end_indexs]
                centerIou_no_match_master_xywh = structure_master_xywh_bboxes[
                    centerIou_no_match_master_indexs]
                distance_match_list = distance_rule_match(
                    centerIou_no_match_end2end_indexs,
                    centerIou_no_match_end2end_xywh,
                    centerIou_no_match_master_indexs,
                    centerIou_no_match_master_xywh)
                match_list.extend(distance_match_list)

            # TODO:
            # The render no-match pseBbox, insert the last
            # After step3 distance rule, a master bbox at least match one end2end bbox.
            # But end2end bbox maybe overmuch, because numbers of master bbox will cut by max length.
            # For these render end2end bboxes, we will make some virtual master bboxes, and get matching.
            # The above extra insert bboxes will be further processed in "formatOutput" function.
            # After this operation, it will increase TEDS score.
            no_match_end2end_indexes = \
                find_no_match(match_list, len(end2end_xywh_bboxes), type='end2end')
            if len(no_match_end2end_indexes) > 0:
                no_match_end2end_xywh = end2end_xywh_bboxes[
                    no_match_end2end_indexes]
                # sort the render no-match end2end bbox in row
                end2end_sorted_indexes_list, end2end_sorted_bboxes_list, sorted_groups, sorted_bboxes_groups = \
                    sort_bbox(no_match_end2end_xywh, no_match_end2end_indexes)
                # make virtual master bboxes, and get matching with the no-match end2end bboxes.
                extra_match_list = extra_match(
                    end2end_sorted_indexes_list,
                    len(structure_master_xywh_bboxes))
                match_list_add_extra_match = copy.deepcopy(match_list)
                match_list_add_extra_match.extend(extra_match_list)
            else:
                # no no-match end2end bboxes
                match_list_add_extra_match = copy.deepcopy(match_list)
                sorted_groups = []
                sorted_bboxes_groups = []

            match_result_dict = {
                'match_list': match_list,
                'match_list_add_extra_match': match_list_add_extra_match,
                'sorted_groups': sorted_groups,
                'sorted_bboxes_groups': sorted_bboxes_groups
            }

            # format output
            match_result_dict = self._format(match_result_dict, file_name)

            match_results[file_name] = match_result_dict

        return match_results

    def _format(self, match_result, file_name):
        """
        Extend the master token(insert virtual master token), and format matching result.
        :param match_result:
        :param file_name:
        :return:
        """
        end2end_info = self.end2end_results[file_name]
        master_info = self.structure_master_results[file_name]
        master_token = master_info['text']
        sorted_groups = match_result['sorted_groups']

        # creat virtual master token
        virtual_master_token_list = []
        for line_group in sorted_groups:
            tmp_list = ['<tr>']
            item_nums = len(line_group)
            for _ in range(item_nums):
                tmp_list.append('<td></td>')
            tmp_list.append('</tr>')
            virtual_master_token_list.extend(tmp_list)

        # insert virtual master token
        master_token_list = master_token.split(',')
        if master_token_list[-1] == '</tbody>':
            # complete predict(no cut by max length)
            # This situation insert virtual master token will drop TEDs score in val set.
            # So we will not extend virtual token in this situation.

            # fake extend virtual
            master_token_list[:-1].extend(virtual_master_token_list)

            # real extend virtual
            # master_token_list = master_token_list[:-1]
            # master_token_list.extend(virtual_master_token_list)
            # master_token_list.append('</tbody>')

        elif master_token_list[-1] == '<td></td>':
            master_token_list.append('</tr>')
            master_token_list.extend(virtual_master_token_list)
            master_token_list.append('</tbody>')
        else:
            master_token_list.extend(virtual_master_token_list)
            master_token_list.append('</tbody>')

        # format output
        match_result.setdefault('matched_master_token_list', master_token_list)
        return match_result

    def get_merge_result(self, match_results):
        """
        Merge the OCR result into structure token to get final results.
        :param match_results:
        :return:
        """
        merged_results = dict()

        # break_token is linefeed token, when one master bbox has multiply end2end bboxes.
        break_token = ' '

        for idx, (file_name, match_info) in enumerate(match_results.items()):
            end2end_info = self.end2end_results[file_name]
            master_token_list = match_info['matched_master_token_list']
            match_list = match_info['match_list_add_extra_match']

            match_dict = get_match_dict(match_list)
            match_text_dict = get_match_text_dict(match_dict, end2end_info,
                                                  break_token)
            merged_result = insert_text_to_token(master_token_list,
                                                 match_text_dict)
            merged_result = deal_bb(merged_result)

            merged_results[file_name] = merged_result

        return merged_results


class TableMasterMatcher(Matcher):
    def __init__(self):
        pass

    def __call__(self, structure_res, dt_boxes, rec_res, img_name=1):
        end2end_results = {img_name: []}
        for dt_box, res in zip(dt_boxes, rec_res):
            d = dict(
                bbox=np.array(dt_box),
                text=res[0], )
            end2end_results[img_name].append(d)

        self.end2end_results = end2end_results

        structure_master_result_dict = {img_name: {}}
        pred_structures, pred_bboxes = structure_res
        pred_structures = ','.join(pred_structures[3:-3])
        structure_master_result_dict[img_name]['text'] = pred_structures
        structure_master_result_dict[img_name]['bbox'] = pred_bboxes
        self.structure_master_results = structure_master_result_dict

        # match
        match_results = self.match()
        merged_results = self.get_merge_result(match_results)
        pred_html = merged_results[img_name]
        # pred_html = '<html><body><table>' + pred_html + '</table></body></html>'
        return pred_html