predict_vqa_token_ser.py 5.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys

__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))

os.environ["FLAGS_allocator_strategy"] = 'auto_growth'

import cv2
import json
import numpy as np
import time

import tools.infer.utility as utility
from ppocr.data import create_operators, transform
from ppocr.postprocess import build_post_process
from ppocr.utils.logging import get_logger
from ppocr.utils.visual import draw_ser_results
from ppocr.utils.utility import get_image_file_list, check_and_read_gif
from ppstructure.utility import parse_args

from paddleocr import PaddleOCR

logger = get_logger()


class SerPredictor(object):
    def __init__(self, args):
        self.ocr_engine = PaddleOCR(use_angle_cls=False, show_log=False)

        pre_process_list = [{
            'VQATokenLabelEncode': {
                'algorithm': args.vqa_algorithm,
                'class_path': args.ser_dict_path,
                'contains_re': False,
                'ocr_engine': self.ocr_engine
            }
        }, {
            'VQATokenPad':{
                'max_seq_len':512,
                'return_attention_mask': True
            }
        }, {
            'VQASerTokenChunk':{
                'max_seq_len':512,
                'return_attention_mask': True
            }
        }, {
            'Resize':{
                'size' : [224, 224]
            }
        }, {
            'NormalizeImage': {
                'std': [58.395, 57.12, 57.375],
                'mean': [123.675, 116.28, 103.53],
                'scale': '1',
                'order': 'hwc'
            }
        }, {
            'ToCHWImage': None
        }, {
            'KeepKeys': {
                'keep_keys': [
                    'input_ids', 'bbox', 'attention_mask', 'token_type_ids', 'image', 'labels',
                    'segment_offset_id', 'ocr_info',
                    'entities'
                ]
            }
        }]
        postprocess_params = {
            'name': 'VQASerTokenLayoutLMPostProcess',
            "class_path": args.ser_dict_path,
        }

        self.preprocess_op = create_operators(pre_process_list, {'infer_mode':True})
        self.postprocess_op = build_post_process(postprocess_params)
        self.predictor, self.input_tensor, self.output_tensors, self.config = \
            utility.create_predictor(args, 'ser', logger)

    def __call__(self, img):
        ori_im = img.copy()
        data = {'image': img}
        data = transform(data, self.preprocess_op)
        img = data[0]
        if img is None:
            return None, 0
        img = np.expand_dims(img, axis=0)
        img = img.copy()
        starttime = time.time()

        for idx in range(len(self.input_tensor)):
            expand_input = np.expand_dims(data[idx], axis=0)
            self.input_tensor[idx].copy_from_cpu(expand_input)

        self.predictor.run()

        outputs = []
        for output_tensor in self.output_tensors:
            output = output_tensor.copy_to_cpu()
            outputs.append(output)
        preds = outputs[0]
        
        post_result = self.postprocess_op(
            preds,
            segment_offset_ids=[data[6]],
            ocr_infos=[data[7]])
        elapse = time.time() - starttime
        return post_result, elapse


def main(args):
    image_file_list = get_image_file_list(args.image_dir)
    ser_predictor = SerPredictor(args)
    count = 0
    total_time = 0

    os.makedirs(args.output, exist_ok=True)
    with open(
            os.path.join(args.output, 'infer.txt'), mode='w',
            encoding='utf-8') as f_w:
        for image_file in image_file_list:
            img, flag = check_and_read_gif(image_file)
            if not flag:
                img = cv2.imread(image_file)
                img = img[:,:,::-1]
            if img is None:
                logger.info("error in loading image:{}".format(image_file))
                continue
            ser_res, elapse = ser_predictor(img)
            ser_res = ser_res[0]

            res_str = '{}\t{}\n'.format(image_file,json.dumps({"ocr_info": ser_res,}, ensure_ascii=False))
            f_w.write(res_str)

            img_res = draw_ser_results(image_file, ser_res,  font_path="../doc/fonts/simfang.ttf",)

            img_save_path = os.path.join(args.output,
                                         os.path.basename(image_file))
            cv2.imwrite(img_save_path, img_res)
            logger.info("save vis result to {}".format(img_save_path))
            if count > 0:
                total_time += elapse
            count += 1
            logger.info("Predict time of {}: {}".format(image_file, elapse))

if __name__ == "__main__":
    main(parse_args())