rec_img_aug.py 15.2 KB
Newer Older
W
WenmuZhou 已提交
1
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
L
LDOUBLEV 已提交
2
#
W
WenmuZhou 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
L
LDOUBLEV 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
W
WenmuZhou 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

L
LDOUBLEV 已提交
15 16 17
import math
import cv2
import numpy as np
T
tink2123 已提交
18
import random
T
Topdu 已提交
19
from PIL import Image
W
WenmuZhou 已提交
20
from .text_image_aug import tia_perspective, tia_stretch, tia_distort
L
LDOUBLEV 已提交
21

W
WenmuZhou 已提交
22 23

class RecAug(object):
L
littletomatodonkey 已提交
24
    def __init__(self, use_tia=True, aug_prob=0.4, **kwargs):
Z
zhoujun 已提交
25
        self.use_tia = use_tia
L
littletomatodonkey 已提交
26
        self.aug_prob = aug_prob
W
WenmuZhou 已提交
27 28 29

    def __call__(self, data):
        img = data['image']
L
littletomatodonkey 已提交
30
        img = warp(img, 10, self.use_tia, self.aug_prob)
W
WenmuZhou 已提交
31 32 33 34
        data['image'] = img
        return data


Z
zhoujun 已提交
35 36 37 38 39 40 41 42 43 44 45
class ClsResizeImg(object):
    def __init__(self, image_shape, **kwargs):
        self.image_shape = image_shape

    def __call__(self, data):
        img = data['image']
        norm_img = resize_norm_img(img, self.image_shape)
        data['image'] = norm_img
        return data


T
Topdu 已提交
46 47
class NRTRRecResizeImg(object):
    def __init__(self, image_shape, resize_type, **kwargs):
T
Topdu 已提交
48
        self.image_shape = image_shape
T
Topdu 已提交
49
        self.resize_type = resize_type
T
Topdu 已提交
50 51 52

    def __call__(self, data):
        img = data['image']
T
Topdu 已提交
53 54 55 56 57 58 59
        if self.resize_type == 'PIL':
            image_pil = Image.fromarray(np.uint8(img))
            img = image_pil.resize(self.image_shape, Image.ANTIALIAS)
            img = np.array(img)
        if self.resize_type == 'OpenCV':
            img = cv2.resize(img, self.image_shape)
        norm_img = np.expand_dims(img, -1)
T
Topdu 已提交
60 61 62 63
        norm_img = norm_img.transpose((2, 0, 1))
        data['image'] = norm_img.astype(np.float32) / 128. - 1.
        return data

Z
zhoujun 已提交
64

W
WenmuZhou 已提交
65 66 67 68 69 70 71 72 73 74 75 76
class RecResizeImg(object):
    def __init__(self,
                 image_shape,
                 infer_mode=False,
                 character_type='ch',
                 **kwargs):
        self.image_shape = image_shape
        self.infer_mode = infer_mode
        self.character_type = character_type

    def __call__(self, data):
        img = data['image']
D
dyning 已提交
77
        if self.infer_mode and self.character_type == "ch":
W
WenmuZhou 已提交
78 79 80 81 82
            norm_img = resize_norm_img_chinese(img, self.image_shape)
        else:
            norm_img = resize_norm_img(img, self.image_shape)
        data['image'] = norm_img
        return data
L
LDOUBLEV 已提交
83 84


T
tink2123 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
class SRNRecResizeImg(object):
    def __init__(self, image_shape, num_heads, max_text_length, **kwargs):
        self.image_shape = image_shape
        self.num_heads = num_heads
        self.max_text_length = max_text_length

    def __call__(self, data):
        img = data['image']
        norm_img = resize_norm_img_srn(img, self.image_shape)
        data['image'] = norm_img
        [encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, gsrm_slf_attn_bias2] = \
            srn_other_inputs(self.image_shape, self.num_heads, self.max_text_length)

        data['encoder_word_pos'] = encoder_word_pos
        data['gsrm_word_pos'] = gsrm_word_pos
        data['gsrm_slf_attn_bias1'] = gsrm_slf_attn_bias1
        data['gsrm_slf_attn_bias2'] = gsrm_slf_attn_bias2
        return data


A
andyjpaddle 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
class SARRecResizeImg(object):
    def __init__(self, image_shape, width_downsample_ratio=0.25, **kwargs):
        self.image_shape = image_shape
        self.width_downsample_ratio = width_downsample_ratio

    def __call__(self, data):
        img = data['image']
        norm_img, resize_shape, pad_shape, valid_ratio = resize_norm_img_sar(img, self.image_shape, self.width_downsample_ratio)
        data['image'] = norm_img
        data['resized_shape'] = resize_shape
        data['pad_shape'] = pad_shape
        data['valid_ratio'] = valid_ratio
        return data


def resize_norm_img_sar(img, image_shape, width_downsample_ratio=0.25):
    imgC, imgH, imgW_min, imgW_max = image_shape
    h = img.shape[0]
    w = img.shape[1]
    valid_ratio = 1.0
    # make sure new_width is an integral multiple of width_divisor.
    width_divisor = int(1 / width_downsample_ratio)
    # resize
    ratio = w / float(h)
    resize_w = math.ceil(imgH * ratio)
    if resize_w % width_divisor != 0:
        resize_w = round(resize_w / width_divisor) * width_divisor
    if imgW_min is not None:
        resize_w = max(imgW_min, resize_w)
    if imgW_max is not None:
        valid_ratio = min(1.0, 1.0 * resize_w / imgW_max)
        resize_w = min(imgW_max, resize_w)
    resized_image = cv2.resize(img, (resize_w, imgH))
    resized_image = resized_image.astype('float32')
    # norm 
    if image_shape[0] == 1:
        resized_image = resized_image / 255
        resized_image = resized_image[np.newaxis, :]
    else:
        resized_image = resized_image.transpose((2, 0, 1)) / 255
    resized_image -= 0.5
    resized_image /= 0.5
    resize_shape = resized_image.shape
    padding_im = -1.0 * np.ones((imgC, imgH, imgW_max), dtype=np.float32)
    padding_im[:, :, 0:resize_w] = resized_image
    pad_shape = padding_im.shape

    return padding_im, resize_shape, pad_shape, valid_ratio


L
LDOUBLEV 已提交
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
def resize_norm_img(img, image_shape):
    imgC, imgH, imgW = image_shape
    h = img.shape[0]
    w = img.shape[1]
    ratio = w / float(h)
    if math.ceil(imgH * ratio) > imgW:
        resized_w = imgW
    else:
        resized_w = int(math.ceil(imgH * ratio))
    resized_image = cv2.resize(img, (resized_w, imgH))
    resized_image = resized_image.astype('float32')
    if image_shape[0] == 1:
        resized_image = resized_image / 255
        resized_image = resized_image[np.newaxis, :]
    else:
        resized_image = resized_image.transpose((2, 0, 1)) / 255
    resized_image -= 0.5
    resized_image /= 0.5
    padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
    padding_im[:, :, 0:resized_w] = resized_image
    return padding_im


T
tink2123 已提交
178 179 180
def resize_norm_img_chinese(img, image_shape):
    imgC, imgH, imgW = image_shape
    # todo: change to 0 and modified image shape
T
tink2123 已提交
181
    max_wh_ratio = imgW * 1.0 / imgH
T
tink2123 已提交
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
    h, w = img.shape[0], img.shape[1]
    ratio = w * 1.0 / h
    max_wh_ratio = max(max_wh_ratio, ratio)
    imgW = int(32 * max_wh_ratio)
    if math.ceil(imgH * ratio) > imgW:
        resized_w = imgW
    else:
        resized_w = int(math.ceil(imgH * ratio))
    resized_image = cv2.resize(img, (resized_w, imgH))
    resized_image = resized_image.astype('float32')
    if image_shape[0] == 1:
        resized_image = resized_image / 255
        resized_image = resized_image[np.newaxis, :]
    else:
        resized_image = resized_image.transpose((2, 0, 1)) / 255
    resized_image -= 0.5
    resized_image /= 0.5
    padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
    padding_im[:, :, 0:resized_w] = resized_image
    return padding_im


T
tink2123 已提交
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
def resize_norm_img_srn(img, image_shape):
    imgC, imgH, imgW = image_shape

    img_black = np.zeros((imgH, imgW))
    im_hei = img.shape[0]
    im_wid = img.shape[1]

    if im_wid <= im_hei * 1:
        img_new = cv2.resize(img, (imgH * 1, imgH))
    elif im_wid <= im_hei * 2:
        img_new = cv2.resize(img, (imgH * 2, imgH))
    elif im_wid <= im_hei * 3:
        img_new = cv2.resize(img, (imgH * 3, imgH))
    else:
        img_new = cv2.resize(img, (imgW, imgH))

    img_np = np.asarray(img_new)
    img_np = cv2.cvtColor(img_np, cv2.COLOR_BGR2GRAY)
    img_black[:, 0:img_np.shape[1]] = img_np
    img_black = img_black[:, :, np.newaxis]

    row, col, c = img_black.shape
    c = 1

    return np.reshape(img_black, (c, row, col)).astype(np.float32)


def srn_other_inputs(image_shape, num_heads, max_text_length):

    imgC, imgH, imgW = image_shape
    feature_dim = int((imgH / 8) * (imgW / 8))

    encoder_word_pos = np.array(range(0, feature_dim)).reshape(
        (feature_dim, 1)).astype('int64')
    gsrm_word_pos = np.array(range(0, max_text_length)).reshape(
        (max_text_length, 1)).astype('int64')

    gsrm_attn_bias_data = np.ones((1, max_text_length, max_text_length))
    gsrm_slf_attn_bias1 = np.triu(gsrm_attn_bias_data, 1).reshape(
        [1, max_text_length, max_text_length])
    gsrm_slf_attn_bias1 = np.tile(gsrm_slf_attn_bias1,
                                  [num_heads, 1, 1]) * [-1e9]

    gsrm_slf_attn_bias2 = np.tril(gsrm_attn_bias_data, -1).reshape(
        [1, max_text_length, max_text_length])
    gsrm_slf_attn_bias2 = np.tile(gsrm_slf_attn_bias2,
                                  [num_heads, 1, 1]) * [-1e9]

    return [
        encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
        gsrm_slf_attn_bias2
    ]


T
tink2123 已提交
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
def flag():
    """
    flag
    """
    return 1 if random.random() > 0.5000001 else -1


def cvtColor(img):
    """
    cvtColor
    """
    hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
    delta = 0.001 * random.random() * flag()
    hsv[:, :, 2] = hsv[:, :, 2] * (1 + delta)
    new_img = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
    return new_img


def blur(img):
    """
    blur
    """
    h, w, _ = img.shape
    if h > 10 and w > 10:
        return cv2.GaussianBlur(img, (5, 5), 1)
    else:
        return img


T
tink2123 已提交
287
def jitter(img):
T
tink2123 已提交
288
    """
T
tink2123 已提交
289
    jitter
T
tink2123 已提交
290 291 292 293 294 295 296 297 298 299 300 301 302 303
    """
    w, h, _ = img.shape
    if h > 10 and w > 10:
        thres = min(w, h)
        s = int(random.random() * thres * 0.01)
        src_img = img.copy()
        for i in range(s):
            img[i:, i:, :] = src_img[:w - i, :h - i, :]
        return img
    else:
        return img


def add_gasuss_noise(image, mean=0, var=0.1):
304 305 306
    """
    Gasuss noise
    """
T
tink2123 已提交
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322

    noise = np.random.normal(mean, var**0.5, image.shape)
    out = image + 0.5 * noise
    out = np.clip(out, 0, 255)
    out = np.uint8(out)
    return out


def get_crop(image):
    """
    random crop
    """
    h, w, _ = image.shape
    top_min = 1
    top_max = 8
    top_crop = int(random.randint(top_min, top_max))
323
    top_crop = min(top_crop, h - 1)
T
tink2123 已提交
324 325 326 327 328 329 330 331 332 333 334 335 336 337
    crop_img = image.copy()
    ratio = random.randint(0, 1)
    if ratio:
        crop_img = crop_img[top_crop:h, :, :]
    else:
        crop_img = crop_img[0:h - top_crop, :, :]
    return crop_img


class Config:
    """
    Config
    """

Z
zhoujun 已提交
338
    def __init__(self, use_tia):
T
tink2123 已提交
339 340 341 342 343 344 345 346
        self.anglex = random.random() * 30
        self.angley = random.random() * 15
        self.anglez = random.random() * 10
        self.fov = 42
        self.r = 0
        self.shearx = random.random() * 0.3
        self.sheary = random.random() * 0.05
        self.borderMode = cv2.BORDER_REPLICATE
Z
zhoujun 已提交
347
        self.use_tia = use_tia
T
tink2123 已提交
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363

    def make(self, w, h, ang):
        """
        make
        """
        self.anglex = random.random() * 5 * flag()
        self.angley = random.random() * 5 * flag()
        self.anglez = -1 * random.random() * int(ang) * flag()
        self.fov = 42
        self.r = 0
        self.shearx = 0
        self.sheary = 0
        self.borderMode = cv2.BORDER_REPLICATE
        self.w = w
        self.h = h

Z
zhoujun 已提交
364 365 366
        self.perspective = self.use_tia
        self.stretch = self.use_tia
        self.distort = self.use_tia
W
WenmuZhou 已提交
367

T
tink2123 已提交
368 369 370 371
        self.crop = True
        self.affine = False
        self.reverse = True
        self.noise = True
T
tink2123 已提交
372
        self.jitter = True
T
tink2123 已提交
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
        self.blur = True
        self.color = True


def rad(x):
    """
    rad
    """
    return x * np.pi / 180


def get_warpR(config):
    """
    get_warpR
    """
    anglex, angley, anglez, fov, w, h, r = \
        config.anglex, config.angley, config.anglez, config.fov, config.w, config.h, config.r
    if w > 69 and w < 112:
        anglex = anglex * 1.5

    z = np.sqrt(w**2 + h**2) / 2 / np.tan(rad(fov / 2))
    # Homogeneous coordinate transformation matrix
    rx = np.array([[1, 0, 0, 0],
                   [0, np.cos(rad(anglex)), -np.sin(rad(anglex)), 0], [
                       0,
                       -np.sin(rad(anglex)),
                       np.cos(rad(anglex)),
                       0,
                   ], [0, 0, 0, 1]], np.float32)
    ry = np.array([[np.cos(rad(angley)), 0, np.sin(rad(angley)), 0],
                   [0, 1, 0, 0], [
                       -np.sin(rad(angley)),
                       0,
                       np.cos(rad(angley)),
                       0,
                   ], [0, 0, 0, 1]], np.float32)
    rz = np.array([[np.cos(rad(anglez)), np.sin(rad(anglez)), 0, 0],
                   [-np.sin(rad(anglez)), np.cos(rad(anglez)), 0, 0],
                   [0, 0, 1, 0], [0, 0, 0, 1]], np.float32)
    r = rx.dot(ry).dot(rz)
    # generate 4 points
    pcenter = np.array([h / 2, w / 2, 0, 0], np.float32)
    p1 = np.array([0, 0, 0, 0], np.float32) - pcenter
    p2 = np.array([w, 0, 0, 0], np.float32) - pcenter
    p3 = np.array([0, h, 0, 0], np.float32) - pcenter
    p4 = np.array([w, h, 0, 0], np.float32) - pcenter
    dst1 = r.dot(p1)
    dst2 = r.dot(p2)
    dst3 = r.dot(p3)
    dst4 = r.dot(p4)
423
    list_dst = np.array([dst1, dst2, dst3, dst4])
T
tink2123 已提交
424 425 426
    org = np.array([[0, 0], [w, 0], [0, h], [w, h]], np.float32)
    dst = np.zeros((4, 2), np.float32)
    # Project onto the image plane
427 428 429
    dst[:, 0] = list_dst[:, 0] * z / (z - list_dst[:, 2]) + pcenter[0]
    dst[:, 1] = list_dst[:, 1] * z / (z - list_dst[:, 2]) + pcenter[1]

T
tink2123 已提交
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
    warpR = cv2.getPerspectiveTransform(org, dst)

    dst1, dst2, dst3, dst4 = dst
    r1 = int(min(dst1[1], dst2[1]))
    r2 = int(max(dst3[1], dst4[1]))
    c1 = int(min(dst1[0], dst3[0]))
    c2 = int(max(dst2[0], dst4[0]))

    try:
        ratio = min(1.0 * h / (r2 - r1), 1.0 * w / (c2 - c1))

        dx = -c1
        dy = -r1
        T1 = np.float32([[1., 0, dx], [0, 1., dy], [0, 0, 1.0 / ratio]])
        ret = T1.dot(warpR)
    except:
        ratio = 1.0
        T1 = np.float32([[1., 0, 0], [0, 1., 0], [0, 0, 1.]])
        ret = T1
    return ret, (-r1, -c1), ratio, dst


def get_warpAffine(config):
    """
    get_warpAffine
    """
    anglez = config.anglez
    rz = np.array([[np.cos(rad(anglez)), np.sin(rad(anglez)), 0],
                   [-np.sin(rad(anglez)), np.cos(rad(anglez)), 0]], np.float32)
    return rz


L
littletomatodonkey 已提交
462
def warp(img, ang, use_tia=True, prob=0.4):
T
tink2123 已提交
463 464 465 466
    """
    warp
    """
    h, w, _ = img.shape
Z
zhoujun 已提交
467
    config = Config(use_tia=use_tia)
T
tink2123 已提交
468 469 470
    config.make(w, h, ang)
    new_img = img

W
WenmuZhou 已提交
471 472 473 474 475 476 477 478 479 480
    if config.distort:
        img_height, img_width = img.shape[0:2]
        if random.random() <= prob and img_height >= 20 and img_width >= 20:
            new_img = tia_distort(new_img, random.randint(3, 6))

    if config.stretch:
        img_height, img_width = img.shape[0:2]
        if random.random() <= prob and img_height >= 20 and img_width >= 20:
            new_img = tia_stretch(new_img, random.randint(3, 6))

T
tink2123 已提交
481
    if config.perspective:
W
WenmuZhou 已提交
482 483 484
        if random.random() <= prob:
            new_img = tia_perspective(new_img)

T
tink2123 已提交
485 486
    if config.crop:
        img_height, img_width = img.shape[0:2]
W
WenmuZhou 已提交
487
        if random.random() <= prob and img_height >= 20 and img_width >= 20:
T
tink2123 已提交
488
            new_img = get_crop(new_img)
W
WenmuZhou 已提交
489

T
tink2123 已提交
490
    if config.blur:
W
WenmuZhou 已提交
491
        if random.random() <= prob:
T
tink2123 已提交
492 493
            new_img = blur(new_img)
    if config.color:
W
WenmuZhou 已提交
494
        if random.random() <= prob:
T
tink2123 已提交
495
            new_img = cvtColor(new_img)
T
tink2123 已提交
496 497
    if config.jitter:
        new_img = jitter(new_img)
T
tink2123 已提交
498
    if config.noise:
W
WenmuZhou 已提交
499
        if random.random() <= prob:
T
tink2123 已提交
500 501
            new_img = add_gasuss_noise(new_img)
    if config.reverse:
W
WenmuZhou 已提交
502
        if random.random() <= prob:
T
tink2123 已提交
503 504
            new_img = 255 - new_img
    return new_img