rnn.py 3.0 KB
Newer Older
W
WenmuZhou 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from paddle import nn

from ppocr.modeling.heads.rec_ctc_head import get_para_bias_attr


class Im2Seq(nn.Layer):
    def __init__(self, in_channels, **kwargs):
        super().__init__()
        self.out_channels = in_channels

    def forward(self, x):
        B, C, H, W = x.shape
W
WenmuZhou 已提交
31 32
        x = x.reshape((B, -1, W))
        x = x.transpose((0, 2, 1))  # (NTC)(batch, width, channels)
W
WenmuZhou 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
        return x


class EncoderWithRNN(nn.Layer):
    def __init__(self, in_channels, hidden_size):
        super(EncoderWithRNN, self).__init__()
        self.out_channels = hidden_size * 2
        self.lstm = nn.LSTM(
            in_channels, hidden_size, direction='bidirectional', num_layers=2)

    def forward(self, x):
        x, _ = self.lstm(x)
        return x


class EncoderWithFC(nn.Layer):
    def __init__(self, in_channels, hidden_size):
        super(EncoderWithFC, self).__init__()
        self.out_channels = hidden_size
        weight_attr, bias_attr = get_para_bias_attr(
            l2_decay=0.00001, k=in_channels, name='reduce_encoder_fea')
        self.fc = nn.Linear(
            in_channels,
            hidden_size,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            name='reduce_encoder_fea')

    def forward(self, x):
        x = self.fc(x)
        return x


class SequenceEncoder(nn.Layer):
W
WenmuZhou 已提交
67
    def __init__(self, in_channels, encoder_type, hidden_size=48, **kwargs):
W
WenmuZhou 已提交
68
        super(SequenceEncoder, self).__init__()
W
WenmuZhou 已提交
69
        self.encoder_reshape = Im2Seq(in_channels)
W
WenmuZhou 已提交
70 71 72 73 74
        self.out_channels = self.encoder_reshape.out_channels
        if encoder_type == 'reshape':
            self.only_reshape = True
        else:
            support_encoder_dict = {
W
WenmuZhou 已提交
75
                'reshape': Im2Seq,
W
WenmuZhou 已提交
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
                'fc': EncoderWithFC,
                'rnn': EncoderWithRNN
            }
            assert encoder_type in support_encoder_dict, '{} must in {}'.format(
                encoder_type, support_encoder_dict.keys())

            self.encoder = support_encoder_dict[encoder_type](
                self.encoder_reshape.out_channels, hidden_size)
            self.out_channels = self.encoder.out_channels
            self.only_reshape = False

    def forward(self, x):
        x = self.encoder_reshape(x)
        if not self.only_reshape:
            x = self.encoder(x)
        return x